We introduce randomized time-bounded Kolmogorov complexity (rKt), a natural extension of Levin’s notion [Leonid A. Levin, 1984] of Kolmogorov complexity. A string w of low rKt complexity can be decompressed from a short representation via a time-bounded algorithm that outputs w with high probability. This complexity measure gives rise to a decision problem over strings: MrKtP (The Minimum rKt Problem). We explore ideas from pseudorandomness to prove that MrKtP and its variants cannot be solved in randomized quasi-polynomial time. This exhibits a natural string compression problem that is provably intractable, even for randomized computations. Our techniques also imply that there is no n^{1 - epsilon}-approximate algorithm for MrKtP running in randomized quasi-polynomial time. Complementing this lower bound, we observe connections between rKt, the power of randomness in computing, and circuit complexity. In particular, we present the first hardness magnification theorem for a natural problem that is unconditionally hard against a strong model of computation.
@InProceedings{oliveira:LIPIcs.ICALP.2019.32, author = {Oliveira, Igor Carboni}, title = {{Randomness and Intractability in Kolmogorov Complexity}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {32:1--32:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.32}, URN = {urn:nbn:de:0030-drops-106087}, doi = {10.4230/LIPIcs.ICALP.2019.32}, annote = {Keywords: computational complexity, randomness, circuit lower bounds, Kolmogorov complexity} }
Feedback for Dagstuhl Publishing