We study fundamental graph parameters such as the Diameter and Radius in directed graphs, when distances are measured using a somewhat unorthodox but natural measure: the distance between u and v is the minimum of the shortest path distances from u to v and from v to u. The center node in a graph under this measure can for instance represent the optimal location for a hospital to ensure the fastest medical care for everyone, as one can either go to the hospital, or a doctor can be sent to help. By computing All-Pairs Shortest Paths, all pairwise distances and thus the parameters we study can be computed exactly in O~(mn) time for directed graphs on n vertices, m edges and nonnegative edge weights. Furthermore, this time bound is tight under the Strong Exponential Time Hypothesis [Roditty-Vassilevska W. STOC 2013] so it is natural to study how well these parameters can be approximated in O(mn^{1-epsilon}) time for constant epsilon>0. Abboud, Vassilevska Williams, and Wang [SODA 2016] gave a polynomial factor approximation for Diameter and Radius, as well as a constant factor approximation for both problems in the special case where the graph is a DAG. We greatly improve upon these bounds by providing the first constant factor approximations for Diameter, Radius and the related Eccentricities problem in general graphs. Additionally, we provide a hierarchy of algorithms for Diameter that gives a time/accuracy trade-off.
@InProceedings{dalirrooyfard_et_al:LIPIcs.ICALP.2019.46, author = {Dalirrooyfard, Mina and Williams, Virginia Vassilevska and Vyas, Nikhil and Wein, Nicole and Xu, Yinzhan and Yu, Yuancheng}, title = {{Approximation Algorithms for Min-Distance Problems}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {46:1--46:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.46}, URN = {urn:nbn:de:0030-drops-106223}, doi = {10.4230/LIPIcs.ICALP.2019.46}, annote = {Keywords: fine-grained complexity, graph algorithms, diameter, radius, eccentricities} }
Feedback for Dagstuhl Publishing