In this paper, we revisit the problem of sampling edges in an unknown graph G = (V, E) from a distribution that is (pointwise) almost uniform over E. We consider the case where there is some a priori upper bound on the arboriciy of G. Given query access to a graph G over n vertices and of average degree {d} and arboricity at most alpha, we design an algorithm that performs O(alpha/d * {log^3 n}/epsilon) queries in expectation and returns an edge in the graph such that every edge e in E is sampled with probability (1 +/- epsilon)/m. The algorithm performs two types of queries: degree queries and neighbor queries. We show that the upper bound is tight (up to poly-logarithmic factors and the dependence in epsilon), as Omega(alpha/d) queries are necessary for the easier task of sampling edges from any distribution over E that is close to uniform in total variational distance. We also prove that even if G is a tree (i.e., alpha = 1 so that alpha/d = Theta(1)), Omega({log n}/{loglog n}) queries are necessary to sample an edge from any distribution that is pointwise close to uniform, thus establishing that a poly(log n) factor is necessary for constant alpha. Finally we show how our algorithm can be applied to obtain a new result on approximately counting subgraphs, based on the recent work of Assadi, Kapralov, and Khanna (ITCS, 2019).
@InProceedings{eden_et_al:LIPIcs.ICALP.2019.52, author = {Eden, Talya and Ron, Dana and Rosenbaum, Will}, title = {{The Arboricity Captures the Complexity of Sampling Edges}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {52:1--52:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.52}, URN = {urn:nbn:de:0030-drops-106287}, doi = {10.4230/LIPIcs.ICALP.2019.52}, annote = {Keywords: sampling, graph algorithms, arboricity, sublinear-time algorithms} }
Feedback for Dagstuhl Publishing