We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph G on n vertices described by a binary string of length N, an integer k ≤ log n and an error parameter ε > 0, our algorithm runs in space Õ(k log(N w_max/w_min)) where w_max and w_min are the maximum and minimum edge weights in G, and produces a weighted graph H with Õ(n^(1+2/k)/ε²) edges that spectrally approximates G, in the sense of Spielmen and Teng [Spielman and Teng, 2004], up to an error of ε. Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastava’s effective resistance based edge sampling algorithm [Spielman and Srivastava, 2011] and uses results from recent work on space-bounded Laplacian solvers [Jack Murtagh et al., 2017]. In particular, we demonstrate an inherent tradeoff (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by k above, and the resulting sparsity that can be achieved.
@InProceedings{doron_et_al:LIPIcs.ICALP.2020.39, author = {Doron, Dean and Murtagh, Jack and Vadhan, Salil and Zuckerman, David}, title = {{Spectral Sparsification via Bounded-Independence Sampling}}, booktitle = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, pages = {39:1--39:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-138-2}, ISSN = {1868-8969}, year = {2020}, volume = {168}, editor = {Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.39}, URN = {urn:nbn:de:0030-drops-124462}, doi = {10.4230/LIPIcs.ICALP.2020.39}, annote = {Keywords: Spectral sparsification, Derandomization, Space complexity} }
Feedback for Dagstuhl Publishing