LIPIcs.ICALP.2020.4.pdf
- Filesize: 0.52 MB
- 15 pages
Given N instances (X_1,t_1),…,(X_N,t_N) of Subset Sum, the AND Subset Sum problem asks to determine whether all of these instances are yes-instances; that is, whether each set of integers X_i has a subset that sums up to the target integer t_i. We prove that this problem cannot be solved in time Õ((N ⋅ t_max)^{1-ε}), for t_max = max_i t_i and any ε > 0, assuming the ∀ ∃ Strong Exponential Time Hypothesis (∀∃-SETH). We then use this result to exclude Õ(n+P_max⋅n^{1-ε})-time algorithms for several scheduling problems on n jobs with maximum processing time P_max, assuming ∀∃-SETH. These include classical problems such as 1||∑ w_jU_j, the problem of minimizing the total weight of tardy jobs on a single machine, and P₂||∑ U_j, the problem of minimizing the number of tardy jobs on two identical parallel machines.
Feedback for Dagstuhl Publishing