The submodular Santa Claus problem was introduced in a seminal work by Goemans, Harvey, Iwata, and Mirrokni (SODA'09) as an application of their structural result. In the mentioned problem n unsplittable resources have to be assigned to m players, each with a monotone submodular utility function f_i. The goal is to maximize min_i f_i(S_i) where S₁,...,S_m is a partition of the resources. The result by Goemans et al. implies a polynomial time O(n^{1/2 +ε})-approximation algorithm. Since then progress on this problem was limited to the linear case, that is, all f_i are linear functions. In particular, a line of research has shown that there is a polynomial time constant approximation algorithm for linear valuation functions in the restricted assignment case. This is the special case where each player is given a set of desired resources Γ_i and the individual valuation functions are defined as f_i(S) = f(S ∩ Γ_i) for a global linear function f. This can also be interpreted as maximizing min_i f(S_i) with additional assignment restrictions, i.e., resources can only be assigned to certain players. In this paper we make comparable progress for the submodular variant: If f is a monotone submodular function, we can in polynomial time compute an O(log log(n))-approximate solution.
@InProceedings{bamas_et_al:LIPIcs.ICALP.2021.22, author = {Bamas, Etienne and Garg, Paritosh and Rohwedder, Lars}, title = {{The Submodular Santa Claus Problem in the Restricted Assignment Case}}, booktitle = {48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)}, pages = {22:1--22:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-195-5}, ISSN = {1868-8969}, year = {2021}, volume = {198}, editor = {Bansal, Nikhil and Merelli, Emanuela and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.22}, URN = {urn:nbn:de:0030-drops-140912}, doi = {10.4230/LIPIcs.ICALP.2021.22}, annote = {Keywords: Scheduling, submodularity, approximation algorithm, hypergraph matching} }
Feedback for Dagstuhl Publishing