Document

# Crossing-Optimal Extension of Simple Drawings

## File

LIPIcs.ICALP.2021.72.pdf
• Filesize: 1.02 MB
• 17 pages

## Acknowledgements

This work was started during the Austrian Computational Geometry Reunion Meeting in Strobl (Austria), August 10 to 14, 2020. We thank all the participants for the nice working atmosphere as well as fruitful discussions on this as well as other topics. The authors would also like to thank Eduard Eiben for his insightful comments.

## Cite As

Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber. Crossing-Optimal Extension of Simple Drawings. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 72:1-72:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.ICALP.2021.72

## Abstract

In extension problems of partial graph drawings one is given an incomplete drawing of an input graph G and is asked to complete the drawing while maintaining certain properties. A prominent area where such problems arise is that of crossing minimization. For plane drawings and various relaxations of these, there is a number of tractability as well as lower-bound results exploring the computational complexity of crossing-sensitive drawing extension problems. In contrast, comparatively few results are known on extension problems for the fundamental and broad class of simple drawings, that is, drawings in which each pair of edges intersects in at most one point. In fact, the extension problem of simple drawings has only recently been shown to be NP-hard even for inserting a single edge. In this paper we present tractability results for the crossing-sensitive extension problem of simple drawings. In particular, we show that the problem of inserting edges into a simple drawing is fixed-parameter tractable when parameterized by the number of edges to insert and an upper bound on newly created crossings. Using the same proof techniques, we are also able to answer several closely related variants of this problem, among others the extension problem for k-plane drawings. Moreover, using a different approach, we provide a single-exponential fixed-parameter algorithm for the case in which we are only trying to insert a single edge into the drawing.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Parameterized complexity and exact algorithms
• Theory of computation → Computational geometry
##### Keywords
• Simple drawings
• Extension problems
• Crossing minimization
• FPT-algorithms

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl, Maurizio Patrignani, and Ignaz Rutter. Testing planarity of partially embedded graphs. ACM Transactions on Algorithms, 11(4):32:1-32:42, 2015. URL: https://doi.org/10.1145/2629341.
2. Patrizio Angelini, Michael A. Bekos, Franz J. Brandenburg, Giordano Da Lozzo, Giuseppe Di Battista, Walter Didimo, Michael Hoffmann, Giuseppe Liotta, Fabrizio Montecchiani, Ignaz Rutter, and Csaba D. Tóth. Simple k-planar graphs are simple (k+1)-quasiplanar. Journal of Combinatorial Theory, Series B, 142:1-35, 2020. URL: https://doi.org/10.1016/j.jctb.2019.08.006.
3. Patrizio Angelini, Ignaz Rutter, and Sandhya T. P. Extending Partial Orthogonal Drawings. In Proceedings of the 28th International Symposium on Graph Drawing and Network Visualization (GD'20), volume 12590 of LNCS, pages 265-278. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-68766-3_21.
4. Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable graphs. Journal of Algorithms, 12(2):308-340, 1991. URL: https://doi.org/10.1016/0196-6774(91)90006-K.
5. Alan Arroyo, Julien Bensmail, and R. Bruce Richter. Extending drawings of graphs to arrangements of pseudolines. In Proceedings of the 36th International Symposium on Computational Geometry (SoCG'20), volume 164 of LIPIcs, pages 9:1-9:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.SoCG.2020.9.
6. Alan Arroyo, Martin Derka, and Irene Parada. Extending simple drawings. In Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization (GD'19), volume 11904 of LNCS, pages 230-243. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-35802-0_18.
7. Alan Arroyo, Fabian Klute, Irene Parada, Raimund Seidel, Birgit Vogtenhuber, and Tilo Wiedera. Inserting one edge into a simple drawing is hard. In Proceedings of the 46th International Workshop on Graph-Theoretic Concepts in Computer Science (WG'20), volume 12301 of LNCS, pages 325-338. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-60440-0_26.
8. Alan Arroyo, Dan McQuillan, R. Bruce Richter, and Gelasio Salazar. Levi’s lemma, pseudolinear drawings of K_n, and empty triangles. Journal of Graph Theory, 87(4):443-459, 2018. URL: https://doi.org/10.1002/jgt.22167.
9. Guido Brückner and Ignaz Rutter. Partial and constrained level planarity. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'17), pages 2000-2011. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.130.
10. Christoph Buchheim, Markus Chimani, Carsten Gutwenger, Michael Jünger, and Petra Mutzel. Crossings and planarization. In Roberto Tamassia, editor, Handbook on Graph Drawing and Visualization, pages 43-85. Chapman and Hall/CRC, 2013.
11. Jean Cardinal and Stefan Felsner. Topological drawings of complete bipartite graphs. Journal of Computational Geometry, 9(1):213-246, 2018. URL: https://doi.org/10.20382/jocg.v9i1a7.
12. Erin W. Chambers, David Eppstein, Michael T. Goodrich, and Maarten Löffler. Drawing graphs in the plane with a prescribed outer face and polynomial area. Journal of Graph Algorithms and Applications, 16(2):243-259, 2012. URL: https://doi.org/10.7155/jgaa.00257.
13. Timothy M. Chan, Fabrizio Frati, Carsten Gutwenger, Anna Lubiw, Petra Mutzel, and Marcus Schaefer. Drawing partially embedded and simultaneously planar graphs. Journal of Graph Algorithms and Applications, 19(2):681-706, 2015. URL: https://doi.org/10.7155/jgaa.00375.
14. Markus Chimani, Carsten Gutwenger, Petra Mutzel, and Christian Wolf. Inserting a vertex into a planar graph. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA'09), pages 375-383. SIAM, 2009.
15. Markus Chimani and Petr Hlinený. Inserting multiple edges into a planar graph. In Proceedings of the 32nd International Symposium on Computational Geometry (SoCG'16), volume 51 of LIPIcs, pages 30:1-30:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.SoCG.2016.30.
16. Bruno Courcelle. The monadic second-order logic of graphs I: recognizable sets of finite graphs. Information and Computation, 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
17. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
18. Reinhard Diestel. Graph Theory, 5th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.
19. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. URL: https://doi.org/10.1145/2744447.2744454.
20. Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending partial 1-planar drawings. In Proceedings of the 47th International Colloquium on Automata, Languages, and Programming (ICALP'20), volume 168 of LIPIcs, pages 43:1-43:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.43.
21. Paul Erdős and Richard K. Guy. Crossing number problems. The American Mathematical Monthly, 80(1):52-58, 1973. URL: https://doi.org/10.1080/00029890.1973.11993230.
22. Paul Erdős and Richard Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society, 1(1):85-90, 1960.
23. Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin, 2006. URL: https://doi.org/10.1007/3-540-29953-X.
24. Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber. Crossing-optimal extension of simple drawings. CoRR, abs/2012.07457, 2020. URL: http://arxiv.org/abs/2012.07457.
25. Péter Hajnal, Alexander Igamberdiev, Günter Rote, and André Schulz. Saturated simple and 2-simple topological graphs with few edges. Journal of Graph Algorithms and Applications, 22(1):117-138, 2018. URL: https://doi.org/10.7155/jgaa.00460.
26. Heiko Harborth. Empty triangles in drawings of the complete graph. Discrete Mathematics, 191(1-3):109-111, 1998. URL: https://doi.org/10.1016/S0012-365X(98)00098-3.
27. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? Journal of Computer and System Sciences, 63(4):512-530, 2001. URL: https://doi.org/10.1006/jcss.2001.1774.
28. Jan Kynčl, János Pach, Radoš Radoičić, and Géza Tóth. Saturated simple and k-simple topological graphs. Computational Geometry: Theory and Application, 48(4):295-310, 2015. URL: https://doi.org/10.1016/j.comgeo.2014.10.008.
29. Jan Kynčl. Enumeration of simple complete topological graphs. European Journal of Combinatorics, 30(7):1676-1685, 2009. URL: https://doi.org/10.1016/j.ejc.2009.03.005.
30. Jan Kynčl. Simple realizability of complete abstract topological graphs simplified. Discrete and Computational Geometry, 64(1):1-27, 2020. URL: https://doi.org/10.1007/s00454-020-00204-0.
31. Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Extending upward planar graph drawings. Computational Geometry: Theory and Applications, 91:101668, 2020. URL: https://doi.org/10.1016/j.comgeo.2020.101668.
32. Tamara Mchedlidze, Martin Nöllenburg, and Ignaz Rutter. Extending convex partial drawings of graphs. Algorithmica, 76(1):47-67, 2016. URL: https://doi.org/10.1007/s00453-015-0018-6.
33. János Pach. Geometric graph theory. In Csaba D. Tóth, Joseph O'Rourke, and Jacob E. Goodman, editors, Handbook of Discrete and Computational Geometry, Third Edition, pages 257-279. CRC press, 2017. URL: https://doi.org/10.1201/9781315119601.
34. Maurizio Patrignani. On extending a partial straight-line drawing. International Journal of Foundations of Computer Science, 17(5):1061-1070, 2006. URL: https://doi.org/10.1142/S0129054106004261.
35. Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. Journal of Combinatorial Theory, Series B, 36(1):49-64, 1984. URL: https://doi.org/10.1016/0095-8956(84)90013-3.
36. Marcus Schaefer. Crossing numbers of graphs. CRC Press, 2018. URL: https://doi.org/10.1201/9781315152394.
37. Thomas Ziegler. Crossing minimization in automatic graph drawing. PhD thesis, Saarland University, Saarbrücken, Germany, 2001.
X

Feedback for Dagstuhl Publishing