Maximizing Non-Monotone Submodular Functions over Small Subsets: Beyond 1/2-Approximation

Authors Aviad Rubinstein, Junyao Zhao



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2022.106.pdf
  • Filesize: 0.77 MB
  • 17 pages

Document Identifiers

Author Details

Aviad Rubinstein
  • Computer Science Department, Stanford University, CA, USA
Junyao Zhao
  • Computer Science Department, Stanford University, CA, USA

Cite AsGet BibTex

Aviad Rubinstein and Junyao Zhao. Maximizing Non-Monotone Submodular Functions over Small Subsets: Beyond 1/2-Approximation. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 106:1-106:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.ICALP.2022.106

Abstract

In this work we give two new algorithms that use similar techniques for (non-monotone) submodular function maximization subject to a cardinality constraint. The first is an offline fixed-parameter tractable algorithm that guarantees a 0.539-approximation for all non-negative submodular functions. The second algorithm works in the random-order streaming model. It guarantees a (1/2+c)-approximation for symmetric functions, and we complement it by showing that no space-efficient algorithm can beat 1/2 for asymmetric functions. To the best of our knowledge this is the first provable separation between symmetric and asymmetric submodular function maximization.

Subject Classification

ACM Subject Classification
  • Theory of computation → Submodular optimization and polymatroids
Keywords
  • Submodular optimization
  • Fixed-parameter tractability
  • Random-order streaming

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Shipra Agrawal, Mohammad Shadravan, and Cliff Stein. Submodular Secretary Problem with Shortlists. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 1:1-1:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ITCS.2019.1.
  2. Naor Alaluf, Alina Ene, Moran Feldman, Huy L Nguyen, and Andrew Suh. Optimal streaming algorithms for submodular maximization with cardinality constraints. In ICALP, 2020. Google Scholar
  3. Naor Alaluf and Moran Feldman. Making a Sieve Random: Improved Semi-Streaming Algorithm for Submodular Maximization under a Cardinality Constraint. arXiv:1906.11237 [cs], June 2019. URL: http://arxiv.org/abs/1906.11237.
  4. Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. Streaming Submodular Maximization: Massive Data Summarization on the Fly. In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani, editors, The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '14, New York, NY, USA - August 24 - 27, 2014, pages 671-680. ACM, 2014. URL: https://doi.org/10.1145/2623330.2623637.
  5. Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a nonsymmetric technique. Mathematics of Operations Research, 44(3):988-1005, 2019. Google Scholar
  6. Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A Tight Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization. SIAM J. Comput., 44(5):1384-1402, 2015. URL: https://doi.org/10.1137/130929205.
  7. Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming algorithms for submodular function maximization. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages 318-330. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-47672-7_26.
  8. Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight FPT approximations for k-median and k-means. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 42:1-42:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.42.
  9. Ethan R. Elenberg, Alexandros G. Dimakis, Moran Feldman, and Amin Karbasi. Streaming weak submodularity: Interpreting neural networks on the fly. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 4044-4054, 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/c182f930a06317057d31c73bb2fedd4f-Abstract.html.
  10. Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing Non-monotone Submodular Functions. SIAM J. Comput., 40(4):1133-1153, 2011. URL: https://doi.org/10.1137/090779346.
  11. Moran Feldman. Maximizing symmetric submodular functions. ACM Trans. Algorithms, 13(3):39:1-39:36, 2017. URL: https://doi.org/10.1145/3070685.
  12. Moran Feldman, Amin Karbasi, and Ehsan Kazemi. Do less, get more: Streaming submodular maximization with subsampling. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pages 730-740, 2018. URL: http://papers.nips.cc/paper/7353-do-less-get-more-streaming-submodular-maximization-with-subsampling.
  13. Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. The One-way Communication Complexity of Submodular Maximization with Applications to Streaming and Robustness. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1363-1374. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384286.
  14. Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing. In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 1098-1116. SIAM, 2011. Google Scholar
  15. Ran Haba, Ehsan Kazemi, Moran Feldman, and Amin Karbasi. Streaming submodular maximization under a k-set system constraint. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 3939-3949. PMLR, 2020. URL: http://proceedings.mlr.press/v119/haba20a.html.
  16. Chien-Chung Huang, Naonori Kakimura, Simon Mauras, and Yuichi Yoshida. Approximability of Monotone Submodular Function Maximization under Cardinality and Matroid Constraints in the Streaming Model. arXiv:2002.05477 [cs], February 2020. URL: http://arxiv.org/abs/2002.05477.
  17. Piotr Indyk and Ali Vakilian. Tight Trade-offs for the Maximum k-Coverage Problem in the General Streaming Model. In Dan Suciu, Sebastian Skritek, and Christoph Koch, editors, Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 200-217. ACM, 2019. URL: https://doi.org/10.1145/3294052.3319691.
  18. Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, and Amin Karbasi. Submodular Streaming in All its Glory: Tight Approximation, Minimum Memory and Low Adaptive Complexity. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages 3311-3320. PMLR, 2019. Google Scholar
  19. Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast Greedy Algorithms in MapReduce and Streaming. TOPC, 2(3):14:1-14:22, 2015. URL: https://doi.org/10.1145/2809814.
  20. Paul Liu, Aviad Rubinstein, Jan Vondrák, and Junyao Zhao. Cardinality constrained submodular maximization for random streams. Advances in Neural Information Processing Systems, 34, 2021. Google Scholar
  21. Pasin Manurangsi. Tight running time lower bounds for strong inapproximability of maximum k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 62-81. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.5.
  22. Andrew McGregor and Hoa T. Vu. Better Streaming Algorithms for the Maximum Coverage Problem. Theory Comput. Syst., 63(7):1595-1619, 2019. URL: https://doi.org/10.1007/s00224-018-9878-x.
  23. Baharan Mirzasoleiman, Stefanie Jegelka, and Andreas Krause. Streaming non-monotone submodular maximization: Personalized video summarization on the fly. In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 1379-1386. AAAI Press, 2018. URL: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17014.
  24. George L Nemhauser and Laurence A Wolsey. Best algorithms for approximating the maximum of a submodular set function. Mathematics of operations research, 3(3):177-188, 1978. Google Scholar
  25. George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An Analysis of Approximations for Maximizing Submodular Set Functions - I. Math. Program., 14(1):265-294, 1978. URL: https://doi.org/10.1007/BF01588971.
  26. Mohammad Shadravan. Improved submodular secretary problem with shortlists. CoRR, abs/2010.01901, 2020. URL: http://arxiv.org/abs/2010.01901.
  27. Piotr Skowron. FPT approximation schemes for maximizing submodular functions. Inf. Comput., 257:65-78, 2017. URL: https://doi.org/10.1016/j.ic.2017.10.002.
  28. Jan Vondrák. Symmetry and Approximability of Submodular Maximization Problems. SIAM J. Comput., 42(1):265-304, 2013. URL: https://doi.org/10.1137/110832318.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail