Let G = (V, E) be an undirected connected simple graph on n vertices. A cut-equivalent tree of G is an edge-weighted tree on the same vertex set V, such that for any pair of vertices s, t ∈ V, the minimum (s, t)-cut in the tree is also a minimum (s, t)-cut in G, and these two cuts have the same cut value. In a recent paper [Abboud, Krauthgamer and Trabelsi, STOC 2021], the authors propose the first subcubic time algorithm for constructing a cut-equivalent tree. More specifically, their algorithm has Õ(n^{2.5}) running time. Later on, this running time was significantly improved to n^{2+o(1)} by two independent works [Abboud, Krauthgamer and Trabelsi, FOCS 2021] and [Li, Panigrahi, Saranurak, FOCS 2021], and then to (m+n^{1.9})^{1+o(1)} by [Abboud, Krauthgamer and Trabelsi, SODA 2022]. In this paper, we improve the running time to Õ(n²) graphs if near-linear time max-flow algorithms exist, or Õ(n^{17/8}) using the currently fastest max-flow algorithm. Although our algorithm is slower than previous works, the runtime bound becomes better by a sub-polynomial factor in dense simple graphs when assuming near-linear time max-flow algorithms.
@InProceedings{zhang:LIPIcs.ICALP.2022.109, author = {Zhang, Tianyi}, title = {{Faster Cut-Equivalent Trees in Simple Graphs}}, booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)}, pages = {109:1--109:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-235-8}, ISSN = {1868-8969}, year = {2022}, volume = {229}, editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.109}, URN = {urn:nbn:de:0030-drops-164507}, doi = {10.4230/LIPIcs.ICALP.2022.109}, annote = {Keywords: graph algorithms, minimum cuts, max-flow} }
Feedback for Dagstuhl Publishing