The well-known Komlós conjecture states that given n vectors in ℝ^d with Euclidean norm at most one, there always exists a ± 1 coloring such that the 𝓁_∞ norm of the signed-sum vector is a constant independent of n and d. We prove this conjecture in a smoothed analysis setting where the vectors are perturbed by adding a small Gaussian noise and when the number of vectors n = ω(d log d). The dependence of n on d is the best possible even in a completely random setting. Our proof relies on a weighted second moment method, where instead of considering uniformly randomly colorings we apply the second moment method on an implicit distribution on colorings obtained by applying the Gram-Schmidt walk algorithm to a suitable set of vectors. The main technical idea is to use various properties of these colorings, including subgaussianity, to control the second moment.
@InProceedings{bansal_et_al:LIPIcs.ICALP.2022.14, author = {Bansal, Nikhil and Jiang, Haotian and Meka, Raghu and Singla, Sahil and Sinha, Makrand}, title = {{Smoothed Analysis of the Koml\'{o}s Conjecture}}, booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)}, pages = {14:1--14:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-235-8}, ISSN = {1868-8969}, year = {2022}, volume = {229}, editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.14}, URN = {urn:nbn:de:0030-drops-163556}, doi = {10.4230/LIPIcs.ICALP.2022.14}, annote = {Keywords: Koml\'{o}s conjecture, smoothed analysis, weighted second moment method, subgaussian coloring} }
Feedback for Dagstuhl Publishing