Fully Functional Parameterized Suffix Trees in Compact Space

Authors Arnab Ganguly, Rahul Shah, Sharma V. Thankachan



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2022.65.pdf
  • Filesize: 0.88 MB
  • 18 pages

Document Identifiers

Author Details

Arnab Ganguly
  • Dept. of Computer Science, University of Wisconsin, Whitewater, WI, USA
Rahul Shah
  • Dept. of Computer Science, Louisiana State University, Baton Rouge, LA, USA
Sharma V. Thankachan
  • Dept. of Computer Science, University of Central Florida, Orlando, FL, USA

Cite AsGet BibTex

Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Fully Functional Parameterized Suffix Trees in Compact Space. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 65:1-65:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.ICALP.2022.65

Abstract

Two equal length strings are a parameterized match (p-match) iff there exists a one-to-one function that renames the symbols in one string to those in the other. The Parameterized Suffix Tree (PST) [Baker, STOC' 93] is a fundamental data structure that handles various string matching problems under this setting. The PST of a text T[1,n] over an alphabet Σ of size σ takes O(nlog n) bits of space. It can report any entry in (parameterized) (i) suffix array, (ii) inverse suffix array, and (iii) longest common prefix (LCP) array in O(1) time. Given any pattern P as a query, a position i in T is an occurrence iff T[i,i+|P|-1] and P are a p-match. The PST can count the number of occurrences of P in T in time O(|P|log σ) and then report each occurrence in time proportional to that of accessing a suffix array entry. An important question is, can we obtain a compressed version of PST that takes space close to the text’s size of nlogσ bits and still support all three functionalities mentioned earlier? In SODA' 17, Ganguly et al. answered this question partially by presenting an O(nlogσ) bit index that can support (parameterized) suffix array and inverse suffix array operations in O(log n) time. However, the compression of the (parameterized) LCP array and the possibility of faster suffix array and inverse suffix array queries in compact space were left open. In this work, we obtain a compact representation of the (parameterized) LCP array. With this result, in conjunction with three new (parameterized) suffix array representations, we obtain the first set of PST representations in o(nlog n) bits (when logσ = o(log n)) as follows. Here ε > 0 is an arbitrarily small constant. - Space O(n logσ) bits and query time O(log_σ^ε n); - Space O(n logσlog log_σ n) bits and query time O(log log_σ n); and - Space O(n logσ log^ε_σ n) bits and query time O(1). The first trade-off is an improvement over Ganguly et al.’s result, whereas our third trade-off matches the optimal time performance of Baker’s PST while squeezing the space by a factor roughly log_σ n. We highlight that our trade-offs match the space-and-time bounds of the best-known compressed text indexes for exact pattern matching and further improvement is highly unlikely.

Subject Classification

ACM Subject Classification
  • Theory of computation → Data structures design and analysis
Keywords
  • Data Structures
  • Suffix Trees
  • String Algorithms
  • Compression

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Brenda S. Baker. A theory of parameterized pattern matching: algorithms and applications. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages 71-80, 1993. URL: https://doi.org/10.1145/167088.167115.
  2. Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing sequences. ACM Trans. Algorithms, 11(4):31:1-31:21, 2015. URL: https://doi.org/10.1145/2629339.
  3. Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Alessio Langiu, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Order-preserving incomplete suffix trees and order-preserving indexes. In String Processing and Information Retrieval - 20th International Symposium, SPIRE 2013, Jerusalem, Israel, October 7-9, 2013, Proceedings, pages 84-95, 2013. URL: https://doi.org/10.1007/978-3-319-02432-5_13.
  4. Gianni Decaroli, Travis Gagie, and Giovanni Manzini. A compact index for order-preserving pattern matching. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer, editors, 2017 Data Compression Conference, DCC 2017, Snowbird, UT, USA, April 4-7, 2017, pages 72-81. IEEE, 2017. URL: https://doi.org/10.1109/DCC.2017.35.
  5. Gianni Decaroli, Travis Gagie, and Giovanni Manzini. A compact index for order-preserving pattern matching. Softw. Pract. Exp., 49(6):1041-1051, 2019. URL: https://doi.org/10.1002/spe.2694.
  6. Diptarama, Takashi Katsura, Yuhei Otomo, Kazuyuki Narisawa, and Ayumi Shinohara. Position heaps for parameterized strings. In Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors, 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, July 4-6, 2017, Warsaw, Poland, volume 78 of LIPIcs, pages 8:1-8:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.CPM.2017.8.
  7. Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552-581, 2005. URL: https://doi.org/10.1145/1082036.1082039.
  8. Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput., 40(2):465-492, 2011. URL: https://doi.org/10.1137/090779759.
  9. Noriki Fujisato, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. The parameterized suffix tray. In Tiziana Calamoneri and Federico Corò, editors, Algorithms and Complexity - 12th International Conference, CIAC 2021, Virtual Event, May 10-12, 2021, Proceedings, volume 12701 of Lecture Notes in Computer Science, pages 258-270. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-75242-2_18.
  10. Travis Gagie, Giovanni Manzini, and Rossano Venturini. An encoding for order-preserving matching. In Kirk Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 38:1-38:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ESA.2017.38.
  11. Arnab Ganguly, Wing-Kai Hon, Yu-An Huang, Solon P. Pissis, Rahul Shah, and Sharma V. Thankachan. Parameterized text indexing with one wildcard. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer, editors, Data Compression Conference, DCC 2019, Snowbird, UT, USA, March 26-29, 2019, pages 152-161. IEEE, 2019. URL: https://doi.org/10.1109/DCC.2019.00023.
  12. Arnab Ganguly, Wing-Kai Hon, Kunihiko Sadakane, Rahul Shah, Sharma V. Thankachan, and Yilin Yang. Space-efficient dictionaries for parameterized and order-preserving pattern matching. In Roberto Grossi and Moshe Lewenstein, editors, 27th Annual Symposium on Combinatorial Pattern Matching, CPM 2016, June 27-29, 2016, Tel Aviv, Israel, volume 54 of LIPIcs, pages 2:1-2:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.CPM.2016.2.
  13. Arnab Ganguly, Wing-Kai Hon, Kunihiko Sadakane, Rahul Shah, Sharma V. Thankachan, and Yilin Yang. A framework for designing space-efficient dictionaries for parameterized and order-preserving matching. Theor. Comput. Sci., 854:52-62, 2021. URL: https://doi.org/10.1016/j.tcs.2020.11.036.
  14. Arnab Ganguly, Wing-Kai Hon, and Rahul Shah. A framework for dynamic parameterized dictionary matching. In Rasmus Pagh, editor, 15th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2016, June 22-24, 2016, Reykjavik, Iceland, volume 53 of LIPIcs, pages 10:1-10:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.SWAT.2016.10.
  15. Arnab Ganguly, Dhrumil Patel, Rahul Shah, and Sharma V. Thankachan. LF successor: Compact space indexing for order-isomorphic pattern matching. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 71:1-71:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.71.
  16. Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. pbwt: Achieving succinct data structures for parameterized pattern matching and related problems. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 397-407, 2017. URL: https://doi.org/10.1137/1.9781611974782.25.
  17. Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Structural pattern matching - succinctly. In Yoshio Okamoto and Takeshi Tokuyama, editors, 28th International Symposium on Algorithms and Computation, ISAAC 2017, December 9-12, 2017, Phuket, Thailand, volume 92 of LIPIcs, pages 35:1-35:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2017.35.
  18. Raffaele Giancarlo. The suffix of a square matrix, with applications. In Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas., pages 402-411, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313842.
  19. Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text indexes. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA., pages 841-850, 2003. URL: http://dl.acm.org/citation.cfm?id=644108.644250.
  20. Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with applications to text indexing and string matching. SIAM J. Comput., 35(2):378-407, 2005. URL: https://doi.org/10.1137/S0097539702402354.
  21. Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology. Cambridge University Press, 1997. URL: https://doi.org/10.1017/cbo9780511574931.
  22. Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. Space-efficient frameworks for top-k string retrieval. J. ACM, 61(2):9:1-9:36, 2014. URL: https://doi.org/10.1145/2590774.
  23. Dong Kyue Kim, Yoo Ah Kim, and Kunsoo Park. Generalizations of suffix arrays to multi-dimensional matrices. Theor. Comput. Sci., 302(1-3):223-238, 2003. URL: https://doi.org/10.1016/S0304-3975(02)00828-9.
  24. Sung-Hwan Kim and Hwan-Gue Cho. Indexing isodirectional pointer sequences. In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors, 31st International Symposium on Algorithms and Computation, ISAAC 2020, December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages 35:1-35:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2020.35.
  25. Sung-Hwan Kim and Hwan-Gue Cho. A compact index for cartesian tree matching. In Pawel Gawrychowski and Tatiana Starikovskaya, editors, 32nd Annual Symposium on Combinatorial Pattern Matching, CPM 2021, July 5-7, 2021, Wrocław, Poland, volume 191 of LIPIcs, pages 18:1-18:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.CPM.2021.18.
  26. Sung-Hwan Kim and Hwan-Gue Cho. Simpler fm-index for parameterized string matching. Inf. Process. Lett., 165:106026, 2021. URL: https://doi.org/10.1016/j.ipl.2020.106026.
  27. Stefan Kurtz. Reducing the space requirement of suffix trees. Softw., Pract. Exper., 29(13):1149-1171, 1999. URL: https://doi.org/10.1002/(SICI)1097-024X(199911)29:13<1149::AID-SPE274>3.0.CO;2-O.
  28. Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches. SIAM J. Comput., 22:935-948, 1993. URL: https://doi.org/10.1137/0222058.
  29. Katsuhito Nakashima, Noriki Fujisato, Diptarama Hendrian, Yuto Nakashima, Ryo Yoshinaka, Shunsuke Inenaga, Hideo Bannai, Ayumi Shinohara, and Masayuki Takeda. Dawgs for parameterized matching: Online construction and related indexing structures. In Inge Li Gørtz and Oren Weimann, editors, 31st Annual Symposium on Combinatorial Pattern Matching, CPM 2020, June 17-19, 2020, Copenhagen, Denmark, volume 161 of LIPIcs, pages 26:1-26:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.CPM.2020.26.
  30. Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University Press, 2016. Google Scholar
  31. Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees. ACM Trans. Algorithms, 10(3):16:1-16:39, 2014. URL: https://doi.org/10.1145/2601073.
  32. Sung Gwan Park, Amihood Amir, Gad M. Landau, and Kunsoo Park. Cartesian tree matching and indexing. In Nadia Pisanti and Solon P. Pissis, editors, 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20, 2019, Pisa, Italy, volume 128 of LIPIcs, pages 16:1-16:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.CPM.2019.16.
  33. Dhrumil Patel and Rahul Shah. Inverse suffix array queries for 2-dimensional pattern matching in near-compact space. In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages 60:1-60:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2021.60.
  34. Mihai Patrascu. Lower bounds for 2-dimensional range counting. In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 40-46. ACM, 2007. URL: https://doi.org/10.1145/1250790.1250797.
  35. Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst., 41(4):589-607, 2007. URL: https://doi.org/10.1007/s00224-006-1198-x.
  36. Tetsuo Shibuya. Generalization of a suffix tree for RNA structural pattern matching. In Algorithm Theory - SWAT 2000, 7th Scandinavian Workshop on Algorithm Theory, Bergen, Norway, July 5-7, 2000, Proceedings, pages 393-406, 2000. URL: https://doi.org/10.1007/3-540-44985-X_34.
  37. Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1-11, 1973. URL: https://doi.org/10.1109/SWAT.1973.13.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail