The Kneser graph K(n,k) is defined for integers n and k with n ≥ 2k as the graph whose vertices are all the k-subsets of {1,2,…,n} where two such sets are adjacent if they are disjoint. A classical result of Lovász asserts that the chromatic number of K(n,k) is n-2k+2. In the computational Kneser problem, we are given an oracle access to a coloring of the vertices of K(n,k) with n-2k+1 colors, and the goal is to find a monochromatic edge. We present a randomized algorithm for the Kneser problem with running time n^O(1) ⋅ k^O(k). This shows that the problem is fixed-parameter tractable with respect to the parameter k. The analysis involves structural results on intersecting families and on induced subgraphs of Kneser graphs. We also study the Agreeable-Set problem of assigning a small subset of a set of m items to a group of 𝓁 agents, so that all agents value the subset at least as much as its complement. As an application of our algorithm for the Kneser problem, we obtain a randomized polynomial-time algorithm for the Agreeable-Set problem for instances that satisfy 𝓁 ≥ m - O({log m}/{log log m}). We further show that the Agreeable-Set problem is at least as hard as a variant of the Kneser problem with an extended access to the input coloring.
@InProceedings{haviv:LIPIcs.ICALP.2022.72, author = {Haviv, Ishay}, title = {{A Fixed-Parameter Algorithm for the Kneser Problem}}, booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)}, pages = {72:1--72:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-235-8}, ISSN = {1868-8969}, year = {2022}, volume = {229}, editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.72}, URN = {urn:nbn:de:0030-drops-164139}, doi = {10.4230/LIPIcs.ICALP.2022.72}, annote = {Keywords: Kneser graph, Fixed-parameter tractability, Agreeable Set} }
Feedback for Dagstuhl Publishing