Given a simple graph G and an integer k, the goal of the k-Clique problem is to decide if G contains a complete subgraph of size k. We say an algorithm approximates k-Clique within a factor g(k) if it can find a clique of size at least k/g(k) when G is guaranteed to have a k-clique. Recently, it was shown that approximating k-Clique within a constant factor is W[1]-hard [Bingkai Lin, 2021]. We study the approximation of k-Clique under the Exponential Time Hypothesis (ETH). The reduction of [Bingkai Lin, 2021] already implies an n^Ω(√[6]{log k})-time lower bound under ETH. We improve this lower bound to n^Ω(log k). Using the gap-amplification technique by expander graphs, we also prove that there is no k^o(1) factor FPT-approximation algorithm for k-Clique under ETH. We also suggest a new way to prove the Parameterized Inapproximability Hypothesis (PIH) under ETH. We show that if there is no n^O(k/(log k))-time algorithm to approximate k-Clique within a constant factor, then PIH is true.
@InProceedings{lin_et_al:LIPIcs.ICALP.2022.90, author = {Lin, Bingkai and Ren, Xuandi and Sun, Yican and Wang, Xiuhan}, title = {{On Lower Bounds of Approximating Parameterized k-Clique}}, booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)}, pages = {90:1--90:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-235-8}, ISSN = {1868-8969}, year = {2022}, volume = {229}, editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.90}, URN = {urn:nbn:de:0030-drops-164317}, doi = {10.4230/LIPIcs.ICALP.2022.90}, annote = {Keywords: parameterized complexity, k-clique, hardness of approximation} }
Feedback for Dagstuhl Publishing