Creative Commons Attribution 4.0 International license
In this work, we study the problem of approximating the distance to subsequence-freeness in the sample-based distribution-free model. For a given subsequence (word) w = w_1 … w_k, a sequence (text) T = t_1 … t_n is said to contain w if there exist indices 1 ≤ i_1 < … < i_k ≤ n such that t_{i_{j}} = w_j for every 1 ≤ j ≤ k. Otherwise, T is w-free. Ron and Rosin (ACM TOCT 2022) showed that the number of samples both necessary and sufficient for one-sided error testing of subsequence-freeness in the sample-based distribution-free model is Θ(k/ε).
Denoting by Δ(T,w,p) the distance of T to w-freeness under a distribution p:[n] → [0,1], we are interested in obtaining an estimate Δ̂, such that |Δ̂ - Δ(T,w,p)| ≤ δ with probability at least 2/3, for a given distance parameter δ. Our main result is an algorithm whose sample complexity is Õ(k²/δ²). We first present an algorithm that works when the underlying distribution p is uniform, and then show how it can be modified to work for any (unknown) distribution p. We also show that a quadratic dependence on 1/δ is necessary.
@InProceedings{cohensidon_et_al:LIPIcs.ICALP.2023.44,
author = {Cohen Sidon, Omer and Ron, Dana},
title = {{Sample-Based Distance-Approximation for Subsequence-Freeness}},
booktitle = {50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
pages = {44:1--44:19},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-278-5},
ISSN = {1868-8969},
year = {2023},
volume = {261},
editor = {Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.44},
URN = {urn:nbn:de:0030-drops-180964},
doi = {10.4230/LIPIcs.ICALP.2023.44},
annote = {Keywords: Property Testing, Distance Approximation}
}