Breaking the All Subsets Barrier for Min k-Cut

Authors Daniel Lokshtanov, Saket Saurabh , Vaishali Surianarayanan



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2023.90.pdf
  • Filesize: 1.07 MB
  • 19 pages

Document Identifiers

Author Details

Daniel Lokshtanov
  • University of California Santa Barbara, CA, USA
Saket Saurabh
  • The Institute of Mathematical Sciences, HBNI, Chennai, India
  • University of Bergen, Norway
Vaishali Surianarayanan
  • University of California Santa Barbara, CA, USA

Cite AsGet BibTex

Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. Breaking the All Subsets Barrier for Min k-Cut. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 90:1-90:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ICALP.2023.90

Abstract

In the Min k-Cut problem, the input is a graph G and an integer k. The task is to find a partition of the vertex set of G into k parts, while minimizing the number of edges that go between different parts of the partition. The problem is NP-complete, and admits a simple 3ⁿ⋅n^𝒪(1) time dynamic programming algorithm, which can be improved to a 2ⁿ⋅n^𝒪(1) time algorithm using the fast subset convolution framework by Björklund et al. [STOC'07]. In this paper we give an algorithm for Min k-Cut with running time 𝒪((2-ε)ⁿ), for ε > 10^{-50}. This is the first algorithm for Min k-Cut with running time 𝒪(cⁿ) for c < 2.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Exact algorithms
  • min k-cut
  • exponential algorithms
  • graph algorithms
  • k-way cut

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment of sequences. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 39-51. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-43948-7_4.
  2. Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522-539. SIAM, 2021. Google Scholar
  3. Arturs Backurs and Christos Tzamos. Improving viterbi is hard: Better runtimes imply faster clique algorithms. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 311-321. PMLR, 2017. URL: http://proceedings.mlr.press/v70/backurs17a.html.
  4. Andreas Björklund. Determinant sums for undirected hamiltonicity. SIAM J. Comput., 43(1):280-299, 2014. URL: https://doi.org/10.1137/110839229.
  5. Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets möbius: fast subset convolution. In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 67-74. ACM, 2007. URL: https://doi.org/10.1145/1250790.1250801.
  6. Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Trimmed moebius inversion and graphs of bounded degree. Theory Comput. Syst., 47(3):637-654, 2010. URL: https://doi.org/10.1007/s00224-009-9185-7.
  7. Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. The traveling salesman problem in bounded degree graphs. ACM Trans. Algorithms, 8(2):18:1-18:13, 2012. URL: https://doi.org/10.1145/2151171.2151181.
  8. Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting connected subgraphs with maximum-degree-aware sieving. In Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao, editors, 29th International Symposium on Algorithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan, volume 123 of LIPIcs, pages 17:1-17:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2018.17.
  9. Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-exclusion. SIAM J. Comput., 39(2):546-563, 2009. URL: https://doi.org/10.1137/070683933.
  10. Andreas Björklund, Petteri Kaski, and Ryan Williams. Solving systems of polynomial equations over GF(2) by a parity-counting self-reduction. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 26:1-26:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.26.
  11. Ivan Bliznets, Fedor V. Fomin, Michal Pilipczuk, and Yngve Villanger. Largest chordal and interval subgraphs faster than 2ⁿ. Algorithmica, 76(2):569-594, 2016. URL: https://doi.org/10.1007/s00453-015-0054-2.
  12. Maw-Shang Chang, Li-Hsuan Chen, Ling-Ju Hung, Peter Rossmanith, and Guan-Han Wu. Exact algorithms for problems related to the densest k-set problem. Inf. Process. Lett., 114(9):510-513, 2014. URL: https://doi.org/10.1016/j.ipl.2014.04.009.
  13. Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michał Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions. SIAM J. Comput., 45(4):1171-1229, 2016. URL: https://doi.org/10.1137/15M1032077.
  14. Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as CNF-SAT. ACM Trans. Algorithms, 12(3):41:1-41:24, 2016. URL: https://doi.org/10.1145/2925416.
  15. Marek Cygan, Pawel Komosa, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Saket Saurabh, and Magnus Wahlström. Randomized contractions meet lean decompositions. ACM Trans. Algorithms, 17(1):6:1-6:30, 2021. URL: https://doi.org/10.1145/3426738.
  16. Marek Cygan and Marcin Pilipczuk. Faster exponential-time algorithms in graphs of bounded average degree. Inf. Comput., 243:75-85, 2015. URL: https://doi.org/10.1016/j.ic.2014.12.007.
  17. Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Scheduling partially ordered jobs faster than 2ⁿ. Algorithmica, 68(3):692-714, 2014. URL: https://doi.org/10.1007/s00453-012-9694-7.
  18. Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via monotone local search. J. ACM, 66(2):8:1-8:23, 2019. URL: https://doi.org/10.1145/3284176.
  19. Fedor V. Fomin, Serge Gaspers, and Saket Saurabh. Improved exact algorithms for counting 3- and 4-colorings. In Guohui Lin, editor, Computing and Combinatorics, 13th Annual International Conference, COCOON 2007, Banff, Canada, July 16-19, 2007, Proceedings, volume 4598 of Lecture Notes in Computer Science, pages 65-74. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-73545-8_9.
  20. Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-16533-7.
  21. Fedor V. Fomin, Dieter Kratsch, Ioan Todinca, and Yngve Villanger. Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput., 38(3):1058-1079, 2008. URL: https://doi.org/10.1137/050643350.
  22. Fedor V. Fomin and Yngve Villanger. Treewidth computation and extremal combinatorics. Comb., 32(3):289-308, 2012. URL: https://doi.org/10.1007/s00493-012-2536-z.
  23. Olivier Goldschmidt and Dorit S. Hochbaum. A polynomial algorithm for the k-cut problem for fixed k. Math. Oper. Res., 19(1):24-37, 1994. URL: https://doi.org/10.1287/moor.19.1.24.
  24. Alexander Golovnev, Alexander S. Kulikov, and Ivan Mihajlin. Families with infants: Speeding up algorithms for np-hard problems using FFT. ACM Trans. Algorithms, 12(3):35:1-35:17, 2016. URL: https://doi.org/10.1145/2847419.
  25. Anupam Gupta, Euiwoong Lee, and Jason Li. Faster exact and approximate algorithms for k-cut. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 113-123. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/FOCS.2018.00020.
  26. Anupam Gupta, Euiwoong Lee, and Jason Li. An FPT algorithm beating 2-approximation for k-cut. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2821-2837. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.179.
  27. Anupam Gupta, Euiwoong Lee, and Jason Li. The number of minimum k-cuts: improving the karger-stein bound. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 229-240. ACM, 2019. URL: https://doi.org/10.1145/3313276.3316395.
  28. Anupam Gupta, Euiwoong Lee, and Jason Li. The karger-stein algorithm is optimal for k-cut. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 473-484. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384285.
  29. Anupam Gupta, Euiwoong Lee, and Jason Li. The number of minimum k-cuts: Improving the karger-stein bound. To appear in STOC 2020, abs/1906.00417, 2020. URL: https://arxiv.org/abs/1906.00417.
  30. Zhiyang He and Jason Li. Breaking the n^k barrier for minimum k-cut on simple graphs. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 131-136. ACM, 2022. Google Scholar
  31. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727.
  32. Stasys Jukna. Extremal combinatorics: with applications in computer science. Springer Science & Business Media, 2011. Google Scholar
  33. David R. Karger and Clifford Stein. A new approach to the minimum cut problem. J. ACM, 43(4):601-640, 1996. URL: https://doi.org/10.1145/234533.234534.
  34. Ken-ichi Kawarabayashi and Bingkai Lin. A nearly 5/3-approximation FPT algorithm for min-k-cut. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 990-999. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.59.
  35. Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of bounded size is fixed-parameter tractable. In 52nd Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 160-169. IEEE Computer Society, 2011. URL: https://doi.org/10.1109/FOCS.2011.53.
  36. Mikko Koivisto. Partitioning into sets of bounded cardinality. In Jianer Chen and Fedor V. Fomin, editors, Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, volume 5917 of Lecture Notes in Computer Science, pages 258-263. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-11269-0_21.
  37. Jason Li. Faster minimum k-cut of a simple graph. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1056-1077. IEEE Computer Society, 2019. URL: https://doi.org/10.1109/FOCS.2019.00068.
  38. Daniel Lokshtanov, Ivan Mikhailin, Ramamohan Paturi, and Pavel Pudlák. Beating brute force for (quantified) satisfiability of circuits of bounded treewidth. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 247-261. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.18.
  39. Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams, and Huacheng Yu. Beating brute force for systems of polynomial equations over finite fields. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2190-2202. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.143.
  40. Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. A parameterized approximation scheme for min dollarkdollar-cut. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 798-809. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00079.
  41. Pasin Manurangsi. Inapproximability of maximum biclique problems, minimum k-cut and densest at-least-k-subgraph from the small set expansion hypothesis. Algorithms, 11(1):10, 2018. URL: https://doi.org/10.3390/a11010010.
  42. Joseph Naor and Yuval Rabani. Tree packing and approximating k-cuts. In S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, pages 26-27. ACM/SIAM, 2001. URL: http://dl.acm.org/citation.cfm?id=365411.365415.
  43. Jesper Nederlof. Finding large set covers faster via the representation method. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 69:1-69:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ESA.2016.69.
  44. Jesper Nederlof. Bipartite TSP in O(1.9999ⁿ) time, assuming quadratic time matrix multiplication. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 40-53. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384264.
  45. Jesper Nederlof, Jakub Pawlewicz, Céline M. F. Swennenhuis, and Karol Wegrzycki. A faster exponential time algorithm for bin packing with a constant number of bins via additive combinatorics. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1682-1701. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.102.
  46. Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved exponential-time algorithm for k-sat. J. ACM, 52(3):337-364, 2005. URL: https://doi.org/10.1145/1066100.1066101.
  47. R Ravi and Amitabh Sinha. Approximating k-cuts using network strength as a lagrangean relaxation. European Journal of Operational Research, 186(1):77-90, 2008. Google Scholar
  48. Huzur Saran and Vijay V. Vazirani. Finding k cuts within twice the optimal. SIAM J. Comput., 24(1):101-108, 1995. URL: https://doi.org/10.1137/S0097539792251730.
  49. Uwe Schöning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In 40th Annual Symposium on Foundations of Computer Science, FOCS '99, 17-18 October, 1999, New York, NY, USA, pages 410-414. IEEE Computer Society, 1999. URL: https://doi.org/10.1109/SFFCS.1999.814612.
  50. Mikkel Thorup. Minimum k-way cuts via deterministic greedy tree packing. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 159-166. ACM, 2008. URL: https://doi.org/10.1145/1374376.1374402.
  51. Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci., 348(2-3):357-365, 2005. URL: https://doi.org/10.1016/j.tcs.2005.09.023.
  52. Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular conjectures such as the strong exponential time hypothesis (invited talk). In Thore Husfeldt and Iyad A. Kanj, editors, 10th International Symposium on Parameterized and Exact Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, volume 43 of LIPIcs, pages 17-29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPIcs.IPEC.2015.17.
  53. Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018, pages 3447-3487. World Scientific, 2018. Google Scholar
  54. Virginia Vassilevska Williams. Some open problems in fine-grained complexity. SIGACT News, 49(4):29-35, 2018. URL: https://doi.org/10.1145/3300150.3300158.
  55. Gerhard J. Woeginger. Exact algorithms for np-hard problems: A survey. In Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi, editors, Combinatorial Optimization - Eureka, You Shrink!, Papers Dedicated to Jack Edmonds, 5th International Workshop, Aussois, France, March 5-9, 2001, Revised Papers, volume 2570 of Lecture Notes in Computer Science, pages 185-208. Springer, 2001. URL: https://doi.org/10.1007/3-540-36478-1_17.
  56. Gerhard J. Woeginger. Open problems around exact algorithms. Discret. Appl. Math., 156(3):397-405, 2008. URL: https://doi.org/10.1016/j.dam.2007.03.023.
  57. Or Zamir. Breaking the 2ⁿ barrier for 5-coloring and 6-coloring. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 113:1-113:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.113.