Compression of Unordered XML Trees

Authors Markus Lohrey, Sebastian Maneth, Carl Philipp Reh

Thumbnail PDF


  • Filesize: 0.53 MB
  • 17 pages

Document Identifiers

Author Details

Markus Lohrey
Sebastian Maneth
Carl Philipp Reh

Cite AsGet BibTex

Markus Lohrey, Sebastian Maneth, and Carl Philipp Reh. Compression of Unordered XML Trees. In 20th International Conference on Database Theory (ICDT 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 68, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Many XML documents are data-centric and do not make use of the inherent document order. Can we provide stronger compression for such documents through giving up order? We first consider compression via minimal dags (directed acyclic graphs) and study the worst case ratio of the size of the ordered dag divided by the size of the unordered dag, where the worst case is taken for all trees of size n. We prove that this worst case ratio is n / log n for the edge size and n log log n / log n for the node size. In experiments we compare several known compressors on the original document tree versus on a canonical version obtained by length-lexicographical sorting of subtrees. For some documents this difference is surprisingly large: reverse binary dags can be smaller by a factor of 3.7 and other compressors can be smaller by factors of up to 190.
  • tree compression
  • directed acyclic graphs
  • XML


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. S. Abiteboul, P. Bourhis, and V. Vianu. Highly expressive query languages for unordered data trees. Theory of Computing Systems, 57(4):927-966, 2015. Google Scholar
  2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974. Google Scholar
  3. A. Boiret, V. Hugot, J. Niehren, and R. Treinen. Logics for unordered trees with data constraints on siblings. In Proceedings of LATA 2015, volume 8977 of Lecture Notes in Computer Science, pages 175-187. Springer, 2015. Google Scholar
  4. I. Boneva, R. Ciucanu, and S. Staworko. Schemas for unordered XML on a DIME. Theory of Computing Systems, 57(2):337-376, 2015. Google Scholar
  5. M. Bousquet-Mélou, M. Lohrey, S. Maneth, and E. Noeth. XML compression via directed acyclic graphs. Theory of Computing Systems, 57(4):1322-1371, 2015. Google Scholar
  6. P. Buneman. Private Communication, 2005. Google Scholar
  7. P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML. In Proceedings of VLDB 2003, pages 141-152. Morgan Kaufmann, 2003. Google Scholar
  8. S. R. Buss. Alogtime algorithms for tree isomorphism, comparison, and canonization. In Proceedings of KGC 1997, volume 1289 of Lecture Notes in Computer Science, pages 18-33. Springer, 1997. Google Scholar
  9. P. J. Downey, R. Sethi, and R. Endre Tarjan. Variations on the common subexpression problem. Journal of the ACM, 27(4):758-771, 1980. Google Scholar
  10. P. Flajolet, P. Sipala, and J.-M. Steyaert. Analytic variations on the common subexpression problem. In Proceedings of ICALP 1990, volume 443 of Lecture Notes in Computer Science, pages 220-234. Springer, 1990. Google Scholar
  11. M. Ganardi, D. Hucke, A. Jeż, M. Lohrey, and E. Noeth. Constructing small tree grammars and small circuits for formulas. Technical report,, 2014. URL:
  12. D. E. Knuth. The Art of Computer Programming, Vol. I: Fundamental Algorithms. Addison-Wesley, 1968. Google Scholar
  13. N. J. Larsson and A. Moffat. Offline dictionary-based compression. In Proceedings of DCC 1999, pages 296-305. IEEE Computer Society, 1999. Google Scholar
  14. H. Liefke and D. Suciu. XMILL: an efficient compressor for XML data. In Proceedings of ACM SIGMOD Conference 2000, pages 153-164. ACM, 2000. Google Scholar
  15. M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression using RePair. Information Systems, 38(8):1150-1167, 2013. Google Scholar
  16. F. Neven and T. Schwentick. XML schemas without order. Unpublished manuscript, 1999. Google Scholar
  17. J. M. Steele. The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. MAA Problem Books Series. Cambridge University Press, 2004. Google Scholar
  18. S. Sundaram and S. Kumar Madria. A change detection system for unordered XML data using a relational model. Data &Knowledge Engineering, 72:257-284, 2012. Google Scholar
  19. Gabriel Valiente. Algorithms on Trees and Graphs. Springer, 2002. Google Scholar
  20. S. Zhang, Z. Du, and J. Tsong-Li Wang. New techniques for mining frequent patterns in unordered trees. IEEE Transactions on Cybernetics, 45(6):1113-1125, 2015. Google Scholar