Document

# Cutwidth: Obstructions and Algorithmic Aspects

## File

LIPIcs.IPEC.2016.15.pdf
• Filesize: 0.56 MB
• 13 pages

## Cite As

Archontia C. Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos, and Marcin Wrochna. Cutwidth: Obstructions and Algorithmic Aspects. In 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 63, pp. 15:1-15:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.IPEC.2016.15

## Abstract

Cutwidth is one of the classic layout parameters for graphs. It measures how well one can order the vertices of a graph in a linear manner, so that the maximum number of edges between any prefix and its complement suffix is minimized. As graphs of cutwidth at most k are closed under taking immersions, the results of Robertson and Seymour imply that there is a finite list of minimal immersion obstructions for admitting a cut layout of width at most k. We prove that every minimal immersion obstruction for cutwidth at most k has size at most 2^O(k^3*log(k)). As an interesting algorithmic byproduct, we design a new fixed-parameter algorithm for computing the cutwidth of a graph that runs in time 2^O(k^2*log(k))*n, where k is the optimum width and n is the number of vertices. While being slower by a log k-factor in the exponent than the fastest known algorithm, due to Thilikos, Bodlaender, and Serna [J. Algorithms 2005], our algorithm has the advantage of being simpler and self-contained; arguably, it explains better the combinatorics of optimum-width layouts.
##### Keywords
• cutwidth
• obstructions
• immersions
• fixed-parameter tractability

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Patrick Bellenbaum and Reinhard Diestel. Two short proofs concerning tree-decompositions. Combinatorics, Probability & Computing, 11(6):541-547, 2002.
2. Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput., 25(6):1305-1317, 1996.
3. Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms, 21(2):358-402, 1996.
4. Heather Booth, Rajeev Govindan, Michael A. Langston, and Siddharthan Ramachandramurthi. Cutwidth approximation in linear time. In Proceedings of the Second Great Lakes Symposium on VLSI, pages 70-73. IEEE, 1992.
5. Josep Díaz, Jordi Petit, and Maria J. Serna. A survey of graph layout problems. ACM Comput. Surv., 34(3):313-356, 2002.
6. Martin Fürer. Faster computation of path-width. In Veli Mäkinen, J. Simon Puglisi, and Leena Salmela, editors, Combinatorial Algorithms: 27th International Workshop, IWOCA 2016, Helsinki, Finland, August 17-19, 2016, Proceedings, pages 385-396, Cham, 2016. Springer International Publishing.
7. Michael R. Garey and David S. Johnson. Computers and intractability, volume 174. Freeman New York, 1979.
8. James F. Geelen, A. M. H. Gerards, and Geoff Whittle. Branch-width and well-quasi-ordering in matroids and graphs. J. Comb. Theory, Ser. B, 84(2):270-290, 2002. A correction is available at URL: http://www.math.uwaterloo.ca/~jfgeelen/Publications/bn-corr.pdf.
9. Rajeev Govindan and Siddharthan Ramachandramurthi. A weak immersion relation on graphs and its applications. Discrete Mathematics, 230(1):189-206, 2001.
10. Pinar Heggernes, Daniel Lokshtanov, Rodica Mihai, and Charis Papadopoulos. Cutwidth of split graphs and threshold graphs. SIAM J. Discrete Math., 25(3):1418-1437, 2011.
11. Pinar Heggernes, Pim van 't Hof, Daniel Lokshtanov, and Jesper Nederlof. Computing the cutwidth of bipartite permutation graphs in linear time. SIAM J. Discrete Math., 26(3):1008-1021, 2012.
12. Mamadou Moustapha Kanté and O-joung Kwon. An upper bound on the size of obstructions for bounded linear rank-width. CoRR, arXiv:1412.6201, 2014.
13. Jens Lagergren. Upper bounds on the size of obstructions and intertwines. J. Comb. Theory, Ser. B, 73(1):7-40, 1998.
14. Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM, 46(6):787-832, 1999.
15. Neil Robertson and Paul D. Seymour. Graph minors XXIII. Nash-Williams' immersion conjecture. J. Comb. Theory, Ser. B, 100(2):181-205, 2010.
16. Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217-241, 1994.
17. Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time fixed parameter algorithm. J. Algorithms, 56(1):1-24, 2005.
18. Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth II: Algorithms for partial w-trees of bounded degree. J. Algorithms, 56(1):25-49, 2005.
19. Robin Thomas. A Menger-like property of tree-width: The finite case. J. Comb. Theory, Ser. B, 48(1):67-76, 1990.
20. Paul Wollan. The structure of graphs not admitting a fixed immersion. J. Comb. Theory, Ser. B, 110:47-66, 2015.
21. Mihalis Yannakakis. A polynomial algorithm for the min-cut linear arrangement of trees. J. ACM, 32(4):950-988, 1985.