On the Parameterized Complexity of Reconfiguration of Connected Dominating Sets

Authors Daniel Lokshtanov, Amer E. Mouawad, Fahad Panolan, Sebastian Siebertz

Thumbnail PDF


  • Filesize: 0.62 MB
  • 15 pages

Document Identifiers

Author Details

Daniel Lokshtanov
  • University of California Santa Barbara, CA, USA
Amer E. Mouawad
  • Department of Computer Science, American University of Beirut, Lebanon
Fahad Panolan
  • Department of Computer Science and Engineering, IIT Hyderabad, India
Sebastian Siebertz
  • University of Bremen, Germany

Cite AsGet BibTex

Daniel Lokshtanov, Amer E. Mouawad, Fahad Panolan, and Sebastian Siebertz. On the Parameterized Complexity of Reconfiguration of Connected Dominating Sets. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


In a reconfiguration version of a decision problem 𝒬 the input is an instance of 𝒬 and two feasible solutions S and T. The objective is to determine whether there exists a step-by-step transformation between S and T such that all intermediate steps also constitute feasible solutions. In this work, we study the parameterized complexity of the Connected Dominating Set Reconfiguration problem (CDS-R). It was shown in previous work that the Dominating Set Reconfiguration problem (DS-R) parameterized by k, the maximum allowed size of a dominating set in a reconfiguration sequence, is fixed-parameter tractable on all graphs that exclude a biclique K_{d,d} as a subgraph, for some constant d ≥ 1. We show that the additional connectivity constraint makes the problem much harder, namely, that CDS-R is W[1]-hard parameterized by k+𝓁, the maximum allowed size of a dominating set plus the length of the reconfiguration sequence, already on 5-degenerate graphs. On the positive side, we show that CDS-R parameterized by k is fixed-parameter tractable, and in fact admits a polynomial kernel on planar graphs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • Theory of computation → Graph algorithms analysis
  • reconfiguration
  • parameterized complexity
  • connected dominating set
  • graph structure theory


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Connectedness of the graph of vertex-colourings. Discrete Mathematics, 308(56):913-919, 2008. Google Scholar
  2. Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125-150, 2000. Google Scholar
  3. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  4. Anuj Dawar and Stephan Kreutzer. Domination problems in nowhere-dense classes. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009, pages 157-168, 2009. Google Scholar
  5. Erik D. Demaine and Joseph O'Rourke. Geometric folding algorithms - linkages, origami, polyhedra. Cambridge University Press, 2007. Google Scholar
  6. Pål Grønås Drange, Markus Sortland Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil, Saket Saurabh, Sebastian Siebertz, and Somnath Sikdar. Kernelization and sparseness: the case of dominating set. In 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, pages 31:1-31:14, 2016. Google Scholar
  7. Eduard Eiben, Mithilesh Kumar, Amer E. Mouawad, Fahad Panolan, and Sebastian Siebertz. Lossy kernels for connected dominating set on sparse graphs. In 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, pages 29:1-29:15, 2018. Google Scholar
  8. Kord Eickmeyer, Archontia C. Giannopoulou, Stephan Kreutzer, O-joung Kwon, Michal Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. Neighborhood complexity and kernelization for nowhere dense classes of graphs. In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, pages 63:1-63:14, 2017. Google Scholar
  9. Grzegorz Fabianski, Michal Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. Progressive algorithms for domination and independence. In 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, pages 27:1-27:16, 2019. Google Scholar
  10. Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Sebastian Ordyniak, Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. Kernelization using structural parameters on sparse graph classes. J. Comput. Syst. Sci., 84:219-242, 2017. Google Scholar
  11. Sevag Gharibian and Jamie Sikora. Ground state connectivity of local hamiltonians. In Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming, ICALP 2015, pages 617-628, 2015. Google Scholar
  12. Parikshit Gopalan, Phokion G. Kolaitis, Elitza N. Maneva, and Christos H. Papadimitriou. The connectivity of Boolean satisfiability: computational and structural dichotomies. SIAM Journal on Computing, 38(6):2330-2355, 2009. Google Scholar
  13. Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of nowhere dense graphs. Journal of the ACM (JACM), 64(3):17, 2017. Google Scholar
  14. Ruth Haas and Karen Seyffarth. The k-dominating graph. Graphs and Combinatorics, 30(3):609-617, 2014. Google Scholar
  15. Arash Haddadan, Takehiro Ito, Amer E. Mouawad, Naomi Nishimura, Hirotaka Ono, Akira Suzuki, and Youcef Tebbal. The complexity of dominating set reconfiguration. Theor. Comput. Sci., 651:37-49, 2016. URL: https://doi.org/10.1016/j.tcs.2016.08.016.
  16. Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. Theoretical Computer Science, 412(12-14):1054-1065, 2011. Google Scholar
  17. Takehiro Ito, Marcin Kamiński, and Erik D. Demaine. Reconfiguration of list edge-colorings in a graph. Discrete Applied Mathematics, 160(15):2199-2207, 2012. Google Scholar
  18. Wm. Woolsey Johnson and William E. Story. Notes on the "15" puzzle. American Journal of Mathematics, 2(4):397-404, 1879. Google Scholar
  19. Iyad A. Kanj and Ge Xia. Flip distance is in FPT time o(n+ k * c^k). In 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, pages 500-512, 2015. Google Scholar
  20. Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of NP-complete puzzles. ICGA Journal, pages 13-34, 2008. Google Scholar
  21. Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Polynomial kernels and wideness properties of nowhere dense graph classes. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 1533-1545, 2017. Google Scholar
  22. Daniel Lokshtanov, Amer E. Mouawad, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Reconfiguration on sparse graphs. J. Comput. Syst. Sci., 95:122-131, 2018. Google Scholar
  23. Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set is NP-complete. Comput. Geom., 49:17-23, 2015. Google Scholar
  24. Amer E. Mouawad. On Reconfiguration Problems: Structure and Tractability. PhD thesis, University of Waterloo, 2015. Google Scholar
  25. Amer E. Mouawad, Naomi Nishimura, Vinayak Pathak, and Venkatesh Raman. Shortest reconfiguration paths in the solution space of boolean formulas. In Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages 985-996, 2015. Google Scholar
  26. Amer E. Mouawad, Naomi Nishimura, Venkatesh Raman, Narges Simjour, and Akira Suzuki. On the parameterized complexity of reconfiguration problems. Algorithmica, 78(1):274-297, 2017. Google Scholar
  27. Wojciech Nadara, Marcin Pilipczuk, Roman Rabinovich, Felix Reidl, and Sebastian Siebertz. Empirical evaluation of approximation algorithms for generalized graph coloring and uniform quasi-wideness. In 17th International Symposium on Experimental Algorithms, SEA 2018, pages 14:1-14:16, 2018. Google Scholar
  28. Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. Google Scholar
  29. Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. On the number of types in sparse graphs. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages 799-808. ACM, 2018. Google Scholar
  30. Sebastian Siebertz. Reconfiguration on nowhere dense graph classes. Electr. J. Comb., 25(3):P3.24, 2018. Google Scholar
  31. Akira Suzuki, Amer E. Mouawad, and Naomi Nishimura. Reconfiguration of dominating sets. Journal of Combinatorial Optimization, 32(4):1182-1195, 2016. Google Scholar
  32. Jan van den Heuvel. The complexity of change. Surveys in combinatorics, 409(2013):127-160, 2013. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail