We study a natural variant of scheduling that we call partial scheduling: In this variant an instance of a scheduling problem along with an integer k is given and one seeks an optimal schedule where not all, but only k jobs, have to be processed. Specifically, we aim to determine the fine-grained parameterized complexity of partial scheduling problems parameterized by k for all variants of scheduling problems that minimize the makespan and involve unit/arbitrary processing times, identical/unrelated parallel machines, release/due dates, and precedence constraints. That is, we investigate whether algorithms with runtimes of the type f(k)n^𝒪(1) or n^𝒪(f(k)) exist for a function f that is as small as possible. Our contribution is two-fold: First, we categorize each variant to be either in 𝖯, NP-complete and fixed-parameter tractable by k, or 𝖶[1]-hard parameterized by k. Second, for many interesting cases we further investigate the run time on a finer scale and obtain run times that are (almost) optimal assuming the Exponential Time Hypothesis. As one of our main technical contributions, we give an 𝒪(8^k k(|V|+|E|)) time algorithm to solve instances of partial scheduling problems minimizing the makespan with unit length jobs, precedence constraints and release dates, where G = (V,E) is the graph with precedence constraints.
@InProceedings{nederlof_et_al:LIPIcs.IPEC.2020.25, author = {Nederlof, Jesper and Swennenhuis, C\'{e}line M. F.}, title = {{On the Fine-Grained Parameterized Complexity of Partial Scheduling to Minimize the Makespan}}, booktitle = {15th International Symposium on Parameterized and Exact Computation (IPEC 2020)}, pages = {25:1--25:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-172-6}, ISSN = {1868-8969}, year = {2020}, volume = {180}, editor = {Cao, Yixin and Pilipczuk, Marcin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2020.25}, URN = {urn:nbn:de:0030-drops-133287}, doi = {10.4230/LIPIcs.IPEC.2020.25}, annote = {Keywords: Fixed-Parameter Tractability, Scheduling, Precedence Constraints} }
Feedback for Dagstuhl Publishing