Document

# On the Parameterized Complexity of Maximum Degree Contraction Problem

## File

LIPIcs.IPEC.2020.26.pdf
• Filesize: 0.72 MB
• 16 pages

## Acknowledgements

We want to thank the anonymous reviewers for their valuable feedback.

## Cite As

Saket Saurabh and Prafullkumar Tale. On the Parameterized Complexity of Maximum Degree Contraction Problem. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 26:1-26:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.IPEC.2020.26

## Abstract

In the Maximum Degree Contraction problem, input is a graph G on n vertices, and integers k, d, and the objective is to check whether G can be transformed into a graph of maximum degree at most d, using at most k edge contractions. A simple brute-force algorithm that checks all possible sets of edges for a solution runs in time n^𝒪(k). As our first result, we prove that this algorithm is asymptotically optimal, upto constants in the exponents, under Exponential Time Hypothesis (ETH). Belmonte, Golovach, van't Hof, and Paulusma studied the problem in the realm of Parameterized Complexity and proved, among other things, that it admits an FPT algorithm running in time (d + k)^(2k) ⋅ n^𝒪(1) = 2^𝒪(k log (k+d)) ⋅ n^𝒪(1), and remains NP-hard for every constant d ≥ 2 (Acta Informatica (2014)). We present a different FPT algorithm that runs in time 2^𝒪(dk) ⋅ n^𝒪(1). In particular, our algorithm runs in time 2^𝒪(k) ⋅ n^𝒪(1), for every fixed d. In the same article, the authors asked whether the problem admits a polynomial kernel, when parameterized by k + d. We answer this question in the negative and prove that it does not admit a polynomial compression unless NP ⊆ coNP/poly.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Fixed parameter tractability
##### Keywords
• Graph Contraction Problems
• FPT Algorithm
• Lower Bound
• ETH
• No Polynomial Kernel

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Akanksha Agarwal, Saket Saurabh, and Prafullkumar Tale. On the parameterized complexity of contraction to generalization of trees. Theory of Computing Systems, 63(3):587-614, 2019.
2. Akanksha Agrawal, Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Prafullkumar Tale. Path contraction faster than 2ⁿ. SIAM Journal on Discrete Mathematics, 34(2):1302-1325, 2020.
3. Akanksha Agrawal, Lawqueen Kanesh, Saket Saurabh, and Prafullkumar Tale. Paths to trees and cacti. In International Conference on Algorithms and Complexity, pages 31-42. Springer, 2017.
4. Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split contraction: The untold story. ACM Transactions on Computation Theory (TOCT), 11(3):1-22, 2019.
5. Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM), 42(4):844-856, 1995.
6. Takao Asano and Tomio Hirata. Edge-contraction problems. Journal of Computer and System Sciences, 26(2):197-208, 1983.
7. Balabhaskar Balasundaram, Shyam Sundar Chandramouli, and Svyatoslav Trukhanov. Approximation algorithms for finding and partitioning unit-disk graphs into co-k-plexes. Optimization Letters, 4(3):311-320, 2010.
8. Rémy Belmonte, Petr A. Golovach, Pim Hof, and Daniël Paulusma. Parameterized complexity of three edge contraction problems with degree constraints. Acta Informatica, 51(7):473-497, 2014.
9. Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes Uhlmann. On bounded-degree vertex deletion parameterized by treewidth. Discrete Applied Mathematics, 160(1-2):53-60, 2012.
10. Hans L Bodlaender and Babette van Antwerpen-de Fluiter. Reduction algorithms for graphs of small treewidth. Information and Computation, 167(2):86-119, 2001.
11. Andries Evert Brouwer and Henk Jan Veldman. Contractibility and NP-completeness. Journal of Graph Theory, 11(1):71-79, 1987.
12. Leizhen Cai and Chengwei Guo. Contracting few edges to remove forbidden induced subgraphs. In International Symposium on Parameterized and Exact Computation, pages 97-109. Springer, 2013.
13. Zhi-Zhong Chen, Michael Fellows, Bin Fu, Haitao Jiang, Yang Liu, Lusheng Wang, and Binhai Zhu. A linear kernel for co-path/cycle packing. In International Conference on Algorithmic Applications in Management, pages 90-102. Springer, 2010.
14. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
15. Anders Dessmark, Klaus Jansen, and Andrzej Lingas. The maximum k-dependent and f-dependent set problem. In International Symposium on Algorithms and Computation, pages 88-97. Springer, 1993.
16. Michael R Fellows, Jiong Guo, Hannes Moser, and Rolf Niedermeier. A generalization of nemhauser and trotter’s local optimization theorem. Journal of Computer and System Sciences, 77(6):1141-1158, 2011.
17. Fedor V. Fomin, Daniel Lokshtanov, Ivan Mihajlin, Saket Saurabh, and Meirav Zehavi. Computation of Hadwiger Number and Related Contraction Problems: Tight Lower Bounds. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), pages 49:1-49:18. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.
18. Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On structural parameterizations of the bounded-degree vertex deletion problem. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.
19. Petr A Golovach, Marcin Kaminski, Daniël Paulusma, and Dimitrios M Thilikos. Increasing the minimum degree of a graph by contractions. Theoretical computer science., 481:74-84, 2013.
20. Petr A Golovach, Pim van’t Hof, and Daniël Paulusma. Obtaining planarity by contracting few edges. Theoretical Computer Science, 476:38-46, 2013.
21. Sylvain Guillemot and Dániel Marx. A faster fpt algorithm for bipartite contraction. Information Processing Letters, 113(22-24):906-912, 2013.
22. Spoorthy Gunda, Pallavi Jain, Daniel Lokshtanov, Saket Saurabh, and Prafullkumar Tale. On the parameterized approximability of contraction to classes of chordal graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020), 2020 (To Appear).
23. Pinar Heggernes, Pim Van'T Hof, Daniel Lokshtanov, and Christophe Paul. Obtaining a bipartite graph by contracting few edges. SIAM Journal on Discrete Mathematics, 27(4):2143-2156, 2013.
24. Pinar Heggernes, Pim Van’t Hof, Benjamin Lévêque, Daniel Lokshtanov, and Christophe Paul. Contracting graphs to paths and trees. Algorithmica, 68(1):109-132, 2014.
25. Christian Komusiewicz, Falk Hüffner, Hannes Moser, and Rolf Niedermeier. Isolation concepts for efficiently enumerating dense subgraphs. Theoretical Computer Science, 410(38-40):3640-3654, 2009.
26. R Krithika, Pranabendu Misra, and Prafullkumar Tale. An fpt algorithm for contraction to cactus. In International Computing and Combinatorics Conference, pages 341-352. Springer, 2018.
27. Ramaswamy Krithika, Pranabendu Misra, Ashutosh Rai, and Prafullkumar Tale. Lossy kernels for graph contraction problems. In 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.
28. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized problems. SIAM Journal on Computing, 47(3):675-702, 2018.
29. Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. On the hardness of eliminating small induced subgraphs by contracting edges. In International Symposium on Parameterized and Exact Computation, pages 243-254. Springer, 2013.
30. Barnaby Martin and Daniël Paulusma. The computational complexity of disconnected cut and 2k2-partition. Journal of combinatorial theory, series B, 111:17-37, 2015.
31. Naomi Nishimura, Prabhakar Ragde, and Dimitrios M Thilikos. Fast fixed-parameter tractable algorithms for nontrivial generalizations of vertex cover. Discrete Applied Mathematics, 152(1-3):229-245, 2005.
32. Saket Saurabh, Uéverton dos Santos Souza, and Prafullkumar Tale. On the parameterized complexity of grid contraction. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.
33. Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the removal of forbidden graphs by edge-deletion or by edge-contraction. Discrete Applied Mathematics, 3(2):151-153, 1981.
34. Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the np-hardness of edge-deletion and-contraction problems. Discrete Applied Mathematics, 6(1):63-78, 1983.