In a permutation graph, vertices represent the elements of a permutation, and edges represent pairs of elements that are reversed by the permutation. In the Permutation Vertex Deletion problem, given an undirected graph G and an integer k, the objective is to test whether there exists a vertex subset S ⊆ V(G) such that |S| ≤ k and G-S is a permutation graph. The parameterized complexity of Permutation Vertex Deletion is a well-known open problem. Bożyk et al. [IPEC 2020] initiated a study towards this problem by requiring that G-S be a bipartite permutation graph (a permutation graph that is bipartite). They called this the Bipartite Permutation Vertex Deletion (BPVD) problem. They showed that the problem admits a factor 9-approximation algorithm as well as a fixed parameter tractable (FPT) algorithm running in time 𝒪(9^k |V(G)|⁹). And they posed the question {whether BPVD admits a polynomial kernel.} We resolve this question in the affirmative by designing a polynomial kernel for BPVD. In particular, we obtain the following: Given an instance (G,k) of BPVD, in polynomial time we obtain an equivalent instance (G',k') of BPVD such that k' ≤ k, and |V(G')|+|E(G')| ≤ k^{𝒪(1)}.
@InProceedings{kanesh_et_al:LIPIcs.IPEC.2021.23, author = {Kanesh, Lawqueen and Madathil, Jayakrishnan and Sahu, Abhishek and Saurabh, Saket and Verma, Shaily}, title = {{A Polynomial Kernel for Bipartite Permutation Vertex Deletion}}, booktitle = {16th International Symposium on Parameterized and Exact Computation (IPEC 2021)}, pages = {23:1--23:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-216-7}, ISSN = {1868-8969}, year = {2021}, volume = {214}, editor = {Golovach, Petr A. and Zehavi, Meirav}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.23}, URN = {urn:nbn:de:0030-drops-154065}, doi = {10.4230/LIPIcs.IPEC.2021.23}, annote = {Keywords: kernelization, bipartite permutation graph, bicliques} }
Feedback for Dagstuhl Publishing