L_1 Geodesic Farthest Neighbors in a Simple Polygon and Related Problems

Author Sang Won Bae



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2016.14.pdf
  • Filesize: 0.58 MB
  • 12 pages

Document Identifiers

Author Details

Sang Won Bae

Cite AsGet BibTex

Sang Won Bae. L_1 Geodesic Farthest Neighbors in a Simple Polygon and Related Problems. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 14:1-14:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.ISAAC.2016.14

Abstract

In this paper, we investigate the L_1 geodesic farthest neighbors in a simple polygon P, and address several fundamental problems related to farthest neighbors. Given a subset S subseteq P, an L_1 geodesic farthest neighbor of p in P from S is one that maximizes the length of L_1 shortest path from p in P. Our list of problems include: computing the diameter, radius, center, farthest-neighbor Voronoi diagram, and two-center of S under the L_1 geodesic distance. We show that all these problems can be solved in linear or near-linear time based on our new observations on farthest neighbors and extreme points. Among them, the key observation shows that there are at most four extreme points of any compact subset S subseteq P with respect to the L_1 geodesic distance after removing redundancy.
Keywords
  • simple polygon
  • L_1 geodesic distance
  • farthest neighbor
  • farthest-neighbor Voronoi diagram
  • k-center

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. H.-K. Ahn, L. Barba, P. Bose, J.-L. De Carufel, M. Korman, and E. Oh. A linear-time algorithm for the geodesic center of a simple polygon. In Proc. 31st Symp. Comput. Geom. (SoCG 2015), volume 34 of LIPIcs, pages 209-223, 2015. Google Scholar
  2. B. Aronov, S. Fortune, and G. Wilfong. The furthest-site geodesic Voronoi diagram. Discrete Comput. Geom., 9:217-255, 1993. Google Scholar
  3. S.W. Bae, M. Korman, Y. Okamoto, and H. Wang. Computing the L₁ geodesic diameter and center of a simple polygon in linear time. Comput. Geom., 48(6):495-505, 2015. Google Scholar
  4. T. M. Chan. More planar two-center algorithms. Comput. Geom., 13(3):189-198, 1999. Google Scholar
  5. Z. Drezner. On the rectangular p-center problem. Naval Research Logistics (NRL), 34(2):229-234, 1987. Google Scholar
  6. L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci., 39(2):126-152, 1989. Google Scholar
  7. L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209-233, 1987. Google Scholar
  8. J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class. Comput. Geom., 4(2):63-97, 1994. Google Scholar
  9. J. Hershberger and S. Suri. Matrix searching with the shortest path metric. SIAM J. Comput., 26(6):1612-1634, 1997. Google Scholar
  10. E. Oh, S.W. Bae, and H.-K. Ahn. Computing a geodesic two-center of points in a simple polygon. In Proc. 12th Latin American Theoretical Info. Symp. (LATIN 2016), volume 9644 of LNCS, pages 646-658, 2016. Google Scholar
  11. E. Oh, L. Barba, and H.-K. Ahn. The farthest-point geodesic Voronoi diagram of points on the boundary of a simple polygon. In Proc. 32nd Symp. Comput. Geom. (SoCG 2016), LIPIcs, pages 56:1-56:15, 2016. Google Scholar
  12. E. Oh, J.-L. De Carufel, and H.-K. Ahn. The 2-center problem in a simple polygon. In Proc. 26th Int'l Symp. Algo. Comput. (ISAAC 2015), volume 9472 of LNCS, pages 307-317, 2015. Google Scholar
  13. G. T. Toussaint. Computing geodesic properties inside a simple polygon. Revue D'Intelligence Artificielle, 3:9-42, 1989. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail