Let S be a finite set of points in the plane that are in convex position. We present an algorithm that constructs a plane frac{3+4 pi}{3}-spanner of S whose vertex degree is at most 3. Let Lambda be the vertex set of a finite non-uniform rectangular lattice in the plane. We present an algorithm that constructs a plane 3 sqrt{2}-spanner for Lambda whose vertex degree is at most 3. For points that are in the plane and in general position, we show how to compute plane degree-3 spanners with a linear number of Steiner points.
@InProceedings{biniaz_et_al:LIPIcs.ISAAC.2016.19, author = {Biniaz, Ahmad and Bose, Prosenjit and De Carufel, Jean-Lou and Gavoille, Cyril and Maheshwari, Anil and Smid, Michiel}, title = {{Towards Plane Spanners of Degree 3}}, booktitle = {27th International Symposium on Algorithms and Computation (ISAAC 2016)}, pages = {19:1--19:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-026-2}, ISSN = {1868-8969}, year = {2016}, volume = {64}, editor = {Hong, Seok-Hee}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.19}, URN = {urn:nbn:de:0030-drops-67887}, doi = {10.4230/LIPIcs.ISAAC.2016.19}, annote = {Keywords: plane spanners, degree-3 spanners, convex position, non-uniform lattice} }
Feedback for Dagstuhl Publishing