We provide a spectrum of results for the Universal Guard Problem, in which one is to obtain a small set of points ("guards") that are "universal" in their ability to guard any of a set of possible polygonal domains in the plane. We give upper and lower bounds on the number of universal guards that are always sufficient to guard all polygons having a given set of n vertices, or to guard all polygons in a given set of k polygons on an n-point vertex set. Our upper bound proofs include algorithms to construct universal guard sets of the respective cardinalities.
@InProceedings{fekete_et_al:LIPIcs.ISAAC.2016.32, author = {Fekete, S\'{a}ndor P. and Li, Qian and Mitchell, Joseph S. B. and Scheffer, Christian}, title = {{Universal Guard Problems}}, booktitle = {27th International Symposium on Algorithms and Computation (ISAAC 2016)}, pages = {32:1--32:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-026-2}, ISSN = {1868-8969}, year = {2016}, volume = {64}, editor = {Hong, Seok-Hee}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.32}, URN = {urn:nbn:de:0030-drops-68022}, doi = {10.4230/LIPIcs.ISAAC.2016.32}, annote = {Keywords: Art Gallery Problem, universal guarding, polygonization, worst-case bounds, robust covering} }
Feedback for Dagstuhl Publishing