The multi-service center problem is a variant of facility location problems. In the problem, we consider locating p facilities on a graph, each of which provides distinct service required by all vertices. Each vertex incurs the cost determined by the sum of the weighted distances to the p facilities. The aim of the problem is to minimize the maximum cost among all vertices. This problem is known to be NP-hard for general graphs, while it is solvable in polynomial time when p is a fixed constant. In this paper, we give sharp analyses for the complexity of the problem from the viewpoint of graph classes and weights on vertices. We first propose a polynomial-time algorithm for trees when p is a part of input. In contrast, we prove that the problem becomes strongly NP-hard even for cycles. We also show that when vertices are allowed to have negative weights, the problem becomes NP-hard for paths of only three vertices and strongly NP-hard for stars.
@InProceedings{ito_et_al:LIPIcs.ISAAC.2017.48, author = {Ito, Takehiro and Kakimura, Naonori and Kobayashi, Yusuke}, title = {{Complexity of the Multi-Service Center Problem}}, booktitle = {28th International Symposium on Algorithms and Computation (ISAAC 2017)}, pages = {48:1--48:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-054-5}, ISSN = {1868-8969}, year = {2017}, volume = {92}, editor = {Okamoto, Yoshio and Tokuyama, Takeshi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.48}, URN = {urn:nbn:de:0030-drops-82536}, doi = {10.4230/LIPIcs.ISAAC.2017.48}, annote = {Keywords: facility location, graph algorithm, multi-service location} }
Feedback for Dagstuhl Publishing