Document

# Faster Algorithms for Half-Integral T-Path Packing

## File

LIPIcs.ISAAC.2017.8.pdf
• Filesize: 0.56 MB
• 12 pages

## Cite As

Maxim Babenko and Stepan Artamonov. Faster Algorithms for Half-Integral T-Path Packing. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 8:1-8:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.ISAAC.2017.8

## Abstract

Let G = (V, E) be an undirected graph, a subset of vertices T be a set of terminals. Then a natural combinatorial problem consists in finding the maximum number of vertex-disjoint paths connecting distinct terminals. For this problem, a clever construction suggested by Gallai reduces it to computing a maximum non-bipartite matching and thus gives an O(mn^1/2 log(n^2/m)/log(n))-time algorithm (hereinafter n := |V|, m := |E|). Now let us consider the fractional relaxation, i.e. allow T-path packings with arbitrary nonnegative real weights. It is known that there always exists a half-integral solution, that is, one only needs to assign weights 0, 1/2, 1 to maximize the total weight of T-paths. It is also known that an optimum half-integral packing can be found in strongly-polynomial time but the actual time bounds are far from being satisfactory. In this paper we present a novel algorithm that solves the half-integral problem within O(mn^1/2 log(n^2/m)/log(n)) time, thus matching the complexities of integral and half-integral versions.
##### Keywords
• graph algorithms
• multiflows
• path packings
• matchings

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0