Computing Vertex-Disjoint Paths in Large Graphs Using MAOs

Authors Johanna E. Preißer, Jens M. Schmidt

Thumbnail PDF


  • Filesize: 440 kB
  • 12 pages

Document Identifiers

Author Details

Johanna E. Preißer
  • Institute of Mathematics, TU Ilmenau, Germany
Jens M. Schmidt
  • Institute of Mathematics, TU Ilmenau, Germany

Cite AsGet BibTex

Johanna E. Preißer and Jens M. Schmidt. Computing Vertex-Disjoint Paths in Large Graphs Using MAOs. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 13:1-13:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


We consider the problem of computing k in N internally vertex-disjoint paths between special vertex pairs of simple connected graphs. For general vertex pairs, the best deterministic time bound is, since 42 years, O(min{k,sqrt{n}}m) for each pair by using traditional flow-based methods. The restriction of our vertex pairs comes from the machinery of maximal adjacency orderings (MAOs). Henzinger showed for every MAO and every 1 <= k <= delta (where delta is the minimum degree of the graph) the existence of k internally vertex-disjoint paths between every pair of the last delta-k+2 vertices of this MAO. Later, Nagamochi generalized this result by using the machinery of mixed connectivity. Both results are however inherently non-constructive. We present the first algorithm that computes these k internally vertex-disjoint paths in linear time O(m), which improves the previously best time O(min{k,sqrt{n}}m). Due to the linear running time, this algorithm is suitable for large graphs. The algorithm is simple, works directly on the MAO structure, and completes a long history of purely existential proofs with a constructive method. We extend our algorithm to compute several other path systems and discuss its impact for certifying algorithms.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
  • Mathematics of computing → Graph algorithms
  • Computing Disjoint Paths
  • Large Graphs
  • Vertex-Connectivity
  • Linear-Time
  • Maximal Adjacency Ordering
  • Maximum Cardinality Search
  • Big Data
  • Certifying Algorithm


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. S. R. Arikati and K. Mehlhorn. A correctness certificate for the Stoer-Wagner min-cut algorithm. Information Processing Letters, 70(5):251-254, 1999. Google Scholar
  2. R. Diestel. Graph Theory. Springer, fourth edition, 2010. Google Scholar
  3. S. Even and R. E. Tarjan. Network Flow and Testing Graph Connectivity. SIAM Journal on Computing, 4(4):507-518, 1975. Google Scholar
  4. A. Frank. On the edge-connectivity algorithm of Nagamochi and Ibaraki. Laboratoire Artemis, IMAG, Université J. Fourier, Grenoble, March 1994. Google Scholar
  5. Z. Galil. Finding the vertex connectivity of graphs. SIAM Journal on Computing, 9(1):197-199, 1980. Google Scholar
  6. M. Rauch Henzinger. A Static 2-Approximation Algorithm for Vertex Connectivity and Incremental Approximation Algorithms for Edge and Vertex Connectivity. Journal of Algorithms, 24:194-220, 1997. Google Scholar
  7. A. V. Karzanov. O nakhozhdenii maksimal'nogo potoka v setyakh spetsial'nogo vida i nekotorykh prilozheniyakh (in Russian; On finding a maximum flow in a network with special structure and some applications). Matematicheskie Voprosy Upravleniya Proizvodstvom, 5:81-94, 1973. Google Scholar
  8. N. Linial, L. Lovász, and A. Wigderson. Rubber bands, convex embeddings and graph connectivity. Combinatorica, 8(1):91-102, 1988. Google Scholar
  9. W. Mader. Existenz gewisser Konfigurationen in n-gesättigten Graphen und in Graphen genügend großer Kantendichte. Mathematische Annalen, 194:295-312, 1971. Google Scholar
  10. W. Mader. Grad und lokaler Zusammenhang in endlichen Graphen. Mathematische Annalen, 205:9-11, 1973. Google Scholar
  11. R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Computer Science Review, 5(2):119-161, 2011. Google Scholar
  12. K. Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10:96-115, 1927. Google Scholar
  13. H. Nagamochi. Sparse connectivity certificates via MA orderings in graphs. Discrete Applied Mathematics, 154(16):2411-2417, 2006. Google Scholar
  14. H. Nagamochi and T. Ibaraki. Computing Edge-Connectivity in Multigraphs and Capacitated Graphs. SIAM Journal on Discrete Mathematics, 5(1):54-66, 1992. Google Scholar
  15. H. Nagamochi and T. Ibaraki. Algorithmic Aspects of Graph Connectivity. Cambridge University Press, 2008. Google Scholar
  16. J. M. Schmidt. Contractions, Removals and Certifying 3-Connectivity in Linear Time. SIAM Journal on Computing, 42(2):494-535, 2013. Google Scholar
  17. M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM, 44(4):585-591, 1997. Google Scholar
  18. R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing, 13(3):566-579, 1984. Google Scholar
  19. H. Whitney. Non-separable and planar graphs. Transactions of the American Mathematical Society, 34(1):339-362, 1932. Google Scholar