Counting Shortest Two Disjoint Paths in Cubic Planar Graphs with an NC Algorithm

Authors Andreas Björklund, Thore Husfeldt



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2018.19.pdf
  • Filesize: 435 kB
  • 13 pages

Document Identifiers

Author Details

Andreas Björklund
  • Department of Computer Science, Lund University, Sweden
Thore Husfeldt
  • BARC, IT University of Copenhagen, Denmark and Lund University, Sweden

Cite AsGet BibTex

Andreas Björklund and Thore Husfeldt. Counting Shortest Two Disjoint Paths in Cubic Planar Graphs with an NC Algorithm. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 19:1-19:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.ISAAC.2018.19

Abstract

Given an undirected graph and two disjoint vertex pairs s_1,t_1 and s_2,t_2, the Shortest two disjoint paths problem (S2DP) asks for the minimum total length of two vertex disjoint paths connecting s_1 with t_1, and s_2 with t_2, respectively. We show that for cubic planar graphs there are NC algorithms, uniform circuits of polynomial size and polylogarithmic depth, that compute the S2DP and moreover also output the number of such minimum length path pairs. Previously, to the best of our knowledge, no deterministic polynomial time algorithm was known for S2DP in cubic planar graphs with arbitrary placement of the terminals. In contrast, the randomized polynomial time algorithm by Björklund and Husfeldt, ICALP 2014, for general graphs is much slower, is serial in nature, and cannot count the solutions. Our results are built on an approach by Hirai and Namba, Algorithmica 2017, for a generalisation of S2DP, and fast algorithms for counting perfect matchings in planar graphs.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Paths and connectivity problems
  • Mathematics of computing → Combinatorial algorithms
Keywords
  • Shortest disjoint paths
  • Cubic planar graph

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Isolde Adler, Stavros G. Kolliopoulos, and Dimitrios M. Thilikos. Planar Disjoint-Paths Completion. In Parameterized and Exact Computation - 6th International Symposium, IPEC 2011, Saarbrücken, Germany, September 6-8, 2011., pages 80-93, 2011. URL: http://dx.doi.org/10.1007/978-3-642-28050-4_7.
  2. Nima Anari and Vijay V. Vazirani. Planar Graph Perfect Matching is in NC. CoRR, abs/1709.07822, 2017. URL: http://arxiv.org/abs/1709.07822.
  3. Stuart J. Berkowitz. On Computing the Determinant in Small Parallel Time Using a Small Number of Processors. Inf. Process. Lett., 18(3):147-150, 1984. URL: http://dx.doi.org/10.1016/0020-0190(84)90018-8.
  4. Andreas Björklund and Thore Husfeldt. Shortest Two Disjoint Paths in Polynomial Time. In Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 211-222, 2014. URL: http://dx.doi.org/10.1007/978-3-662-43948-7_18.
  5. Stephen A. Cook. A Taxonomy of Problems with Fast Parallel Algorithms. Information and Control, 64(1-3):2-21, 1985. URL: http://dx.doi.org/10.1016/S0019-9958(85)80041-3.
  6. L. Csanky. Fast Parallel Matrix Inversion Algorithms. SIAM J. Comput., 5(4):618-623, 1976. URL: http://dx.doi.org/10.1137/0205040.
  7. Samir Datta, Siddharth Iyer, Raghav Kulkarni, and Anish Mukherjee. Shortest k-Disjoint Paths via Determinants. CoRR, abs/1802.01338, 2018. Accepted to FSTTCS 2018. URL: http://arxiv.org/abs/1802.01338.
  8. Éric Colin de Verdière and Alexander Schrijver. Shortest vertex-disjoint two-face paths in planar graphs. ACM Trans. Algorithms, 7(2):19:1-19:12, 2011. URL: http://dx.doi.org/10.1145/1921659.1921665.
  9. Tibor Gallai. Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen. Acta Mathematica Academiae Scientiarum Hungaricae, 12:131-173, 1961. Google Scholar
  10. Anna Galluccio and Martin Loebl. On the Theory of Pfaffian Orientations. I. Perfect Matchings and Permanents. Electr. J. Comb., 6, 1999. URL: http://www.combinatorics.org/Volume_6/Abstracts/v6i1r6.html.
  11. Anna Galluccio, Martin Loebl, and Jan Vondrák. Optimization via enumeration: a new algorithm for the Max Cut Problem. Math. Program., 90(2):273-290, 2001. URL: http://dx.doi.org/10.1007/PL00011425.
  12. Hiroshi Hirai and Hiroyuki Namba. Shortest (A+B)-Path Packing Via Hafnian. Algorithmica, 80(8):2478-2491, 2018. URL: http://dx.doi.org/10.1007/s00453-017-0334-0.
  13. Hiroshi Hirai and Gyula Pap. Tree metrics and edge-disjoint S-paths. Math. Program., 147(1-2):81-123, 2014. URL: http://dx.doi.org/10.1007/s10107-013-0713-5.
  14. Marek Karpinski and Wojciech Rytter. Fast parallel algorithms for graph matching problems. Oxford University Press Inc. New York, NY, USA, 1998. Google Scholar
  15. Pieter W. Kasteleyn. Graph Theory and Chrystal Physics. In F. Harary, editor, Graph Theory and Chrystal Physics, pages 47-52. Academic Press, London, 1957. Google Scholar
  16. Ken-ichi Kawarabayashi and Paul Wollan. A shorter proof of the graph minor algorithm: the unique linkage theorem. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Mass., USA, 5-8 June 2010, pages 687-694, 2010. URL: http://dx.doi.org/10.1145/1806689.1806783.
  17. Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. Processor Efficient Parallel Algorithms for the Two Disjoint Paths Problem and for Finding a Kuratowski Homeomorph. SIAM J. Comput., 21(3):486-506, 1992. URL: http://dx.doi.org/10.1137/0221032.
  18. Philip N. Klein and John H. Reif. An Efficient Parallel Algorithm for Planarity. J. Comput. Syst. Sci., 37(2):190-246, 1988. URL: http://dx.doi.org/10.1016/0022-0000(88)90006-2.
  19. Yusuke Kobayashi and Christian Sommer. On shortest disjoint paths in planar graphs. Discrete Optimization, 7(4):234-245, 2010. URL: http://dx.doi.org/10.1016/j.disopt.2010.05.002.
  20. Richard J. Lipton, Donald J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM Journal on Numerical Analysis, 16(2):346-358, 1979. Google Scholar
  21. Charles H. C. Little. An extension of Kasteleyn’s method of enumerating the 1-factors of planar graphs. In D. Holton, editor, Combinatorial Mathematics, Proceedings 2nd Australian Conference, number 403 in Lecture Notes in Mathematics, pages 63-72, 1974. Google Scholar
  22. László Lovász and Michael D. Plummer. Matching Theory. North Holland, 1986. Google Scholar
  23. Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix inversion. Combinatorica, 7(1):105-113, 1987. Google Scholar
  24. T. Ohtsuki. The two disjoint path problem and wire routing design. In Graph Theory and Algorithms, Proc. 17th Symposium of Research Institute of Electric Communication (Sendai, Japan, October 24-25, 1980), pages 207-216. Springer, 1981. Google Scholar
  25. Paul D. Seymour. Disjoint paths in graphs. Discrete Mathematics, 29(3):293-309, 1980. URL: http://dx.doi.org/10.1016/0012-365X(80)90158-2.
  26. Yossi Shiloach. A Polynomial Solution to the Undirected Two Paths Problem. J. ACM, 27(3):445-456, 1980. URL: http://dx.doi.org/10.1145/322203.322207.
  27. Torsten Tholey. Solving the 2-Disjoint Paths Problem in Nearly Linear Time. Theory Comput. Syst., 39(1):51-78, 2006. URL: http://dx.doi.org/10.1007/s00224-005-1256-9.
  28. Carsten Thomassen. 2-linked graphs. Eur. J. Combin, 1:371-378, 1980. Google Scholar
  29. Salil P. Vadhan. The Complexity of Counting in Sparse, Regular, and Planar Graphs. SIAM J. Comput., 31(2):398-427, 2001. Google Scholar
  30. Vijay V. Vazirani. NC algorithms for computing the number of perfect matchings in K_3,3-free graphs and related problems. Information and Computation, 80:152-164, 1989. Google Scholar
  31. Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed.). Cambridge University Press, 2013. Google Scholar
  32. Raphael Yuster. Matrix Sparsification for Rank and Determinant Computations via Nested Dissection. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 137-145, 2008. URL: http://dx.doi.org/10.1109/FOCS.2008.14.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail