LIPIcs.ISAAC.2018.53.pdf
- Filesize: 0.51 MB
- 13 pages
The centerpoint theorem is a well-known and widely used result in discrete geometry. It states that for any point set P of n points in R^d, there is a point c, not necessarily from P, such that each halfspace containing c contains at least n/(d+1) points of P. Such a point c is called a centerpoint, and it can be viewed as a generalization of a median to higher dimensions. In other words, a centerpoint can be interpreted as a good representative for the point set P. But what if we allow more than one representative? For example in one-dimensional data sets, often certain quantiles are chosen as representatives instead of the median. We present a possible extension of the concept of quantiles to higher dimensions. The idea is to find a set Q of (few) points such that every halfspace that contains one point of Q contains a large fraction of the points of P and every halfspace that contains more of Q contains an even larger fraction of P. This setting is comparable to the well-studied concepts of weak epsilon-nets and weak epsilon-approximations, where it is stronger than the former but weaker than the latter. We show that for any point set of size n in R^d and for any positive alpha_1,...,alpha_k where alpha_1 <= alpha_2 <= ... <= alpha_k and for every i,j with i+j <= k+1 we have that (d-1)alpha_k+alpha_i+alpha_j <= 1, we can find Q of size k such that each halfspace containing j points of Q contains least alpha_j n points of P. For two-dimensional point sets we further show that for every alpha and beta with alpha <= beta and alpha+beta <= 2/3 we can find Q with |Q|=3 such that each halfplane containing one point of Q contains at least alpha n of the points of P and each halfplane containing all of Q contains at least beta n points of P. All these results generalize to the setting where P is any mass distribution. For the case where P is a point set in R^2 and |Q|=2, we provide algorithms to find such points in time O(n log^3 n).
Feedback for Dagstuhl Publishing