Given a 2-edge connected, unweighted, and undirected graph G with n vertices and m edges, a sigma-tree spanner is a spanning tree T of G in which the ratio between the distance in T of any pair of vertices and the corresponding distance in G is upper bounded by sigma. The minimum value of sigma for which T is a sigma-tree spanner of G is also called the stretch factor of T. We address the fault-tolerant scenario in which each edge e of a given tree spanner may temporarily fail and has to be replaced by a best swap edge, i.e. an edge that reconnects T-e at a minimum stretch factor. More precisely, we design an O(n^2) time and space algorithm that computes a best swap edge of every tree edge. Previously, an O(n^2 log^4 n) time and O(n^2+m log^2n) space algorithm was known for edge-weighted graphs [Bilò et al., ISAAC 2017]. Even if our improvements on both the time and space complexities are of a polylogarithmic factor, we stress the fact that the design of a o(n^2) time and space algorithm would be considered a breakthrough.
@InProceedings{bilo_et_al:LIPIcs.ISAAC.2018.7, author = {Bil\`{o}, Davide and Papadopoulos, Kleitos}, title = {{A Novel Algorithm for the All-Best-Swap-Edge Problem on Tree Spanners}}, booktitle = {29th International Symposium on Algorithms and Computation (ISAAC 2018)}, pages = {7:1--7:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-094-1}, ISSN = {1868-8969}, year = {2018}, volume = {123}, editor = {Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.7}, URN = {urn:nbn:de:0030-drops-99557}, doi = {10.4230/LIPIcs.ISAAC.2018.7}, annote = {Keywords: Transient edge failure, best swap edges, tree spanner} }
Feedback for Dagstuhl Publishing