Document

Parameterized Complexity Classification of Deletion to List Matrix-Partition for Low-Order Matrices

File

LIPIcs.ISAAC.2019.41.pdf
• Filesize: 2.8 MB
• 14 pages

Cite As

Akanksha Agrawal, Sudeshna Kolay, Jayakrishnan Madathil, and Saket Saurabh. Parameterized Complexity Classification of Deletion to List Matrix-Partition for Low-Order Matrices. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 41:1-41:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.ISAAC.2019.41

Abstract

Given a symmetric l x l matrix M=(m_{i,j}) with entries in {0,1,*}, a graph G and a function L : V(G) - > 2^{[l]} (where [l] = {1,2,...,l}), a list M-partition of G with respect to L is a partition of V(G) into l parts, say, V_1, V_2, ..., V_l such that for each i,j in {1,2,...,l}, (i) if m_{i,j}=0 then for any u in V_i and v in V_j, uv not in E(G), (ii) if m_{i,j}=1 then for any (distinct) u in V_i and v in V_j, uv in E(G), (iii) for each v in V(G), if v in V_i then i in L(v). We consider the Deletion to List M-Partition problem that takes as input a graph G, a list function L:V(G) - > 2^[l] and a positive integer k. The aim is to determine whether there is a k-sized set S subseteq V(G) such that G-S has a list M-partition. Many important problems like Vertex Cover, Odd Cycle Transversal, Split Vertex Deletion, Multiway Cut and Deletion to List Homomorphism are special cases of the Deletion to List M-Partition problem. In this paper, we provide a classification of the parameterized complexity of Deletion to List M-Partition, parameterized by k, (a) when M is of order at most 3, and (b) when M is of order 4 with all diagonal entries belonging to {0,1}.

Subject Classification

ACM Subject Classification
• Theory of computation → Design and analysis of algorithms
• Theory of computation → Fixed parameter tractability
Keywords
• list matrix partitions
• parameterized classification
• Almost 2-SAT
• important separators
• iterative compression

Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

References

1. Noga Alon and Michael Tarsi. Colorings and orientations of graphs. Combinatorica, 12(2):125-134, 1992.
2. Bengt Aspvall, Michael F. Plass, and Robert E. Tarjan. A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas. Information Processing Letters, 8(3):121-123, 1979.
3. Armen S. Asratian, Tristan M. J. Denley, and Roland Häggkvist. Bipartite graphs and their applications, volume 131. Cambridge University Press, 1998.
4. Andreas Brandstädt, Feodor F. Dragan, Van Bang Le, and Thomas Szymczak. On stable cutsets in graphs. Discrete Applied Mathematics, 105(1-3):39-50, 2000. URL: https://doi.org/10.1016/S0166-218X(00)00197-9.
5. Kathie Cameron, Elaine M. Eschen, Chính T. Hoàng, and R. Sritharan. The Complexity of the List Partition Problem for Graphs. SIAM J. Discrete Math., 21(4):900-929, 2007.
6. Jianer Chen, Yang Liu, Songjian Lu, Barry O'Sullivan, and Igor Razgon. A fixed-parameter algorithm for the directed feedback vertex set problem. Journal of the ACM, 55(5):21:1-21:19, 2008.
7. Rajesh Chitnis, László Egri, and Dániel Marx. List H-Coloring a Graph by Removing Few Vertices. Algorithmica, 78(1):110-146, 2017.
8. Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin, Jakub Pachocki, and Arkadiusz Socała. Tight Bounds for Graph Homomorphism and Subgraph Isomorphism. In ACM-SIAM Symposium on Discrete Algorithms, pages 1643-1649, 2016.
9. Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis Yannakakis. The Complexity of Multiway Cuts (Extended Abstract). In ACM Symposium on Theory of Computing (STOC), pages 241-251, 1992.
10. Josep Díaz, Maria Serna, and Dimitrios M. Thilikos. (H,C,K)-coloring: Fast, easy, and hard cases. In Mathematical Foundations of Computer Science (MFCS), pages 304-315, 2001.
11. Josep Díaz, Maria Serna, and Dimitrios M Thilikos. Recent results on parameterized H-colorings. Discrete Mathematics and Theoretical Computer Science, 63:65-86, 2004.
12. László Egri, Andrei Krokhin, Benoit Larose, and Pascal Tesson. The complexity of the list homomorphism problem for graphs. Theory of Computing Systems, 51(2):143-178, 2012.
13. Paul Erdős, Arthur L. Rubin, and Herbert Taylor. Choosability in graphs. In Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium, volume 26, pages 125-157, 1979.
14. Tomás Feder and Pavol Hell. List Homomorphisms to Reflexive Graphs. Journal of Combinatorial Theory, Series B, 72(2):236-250, 1998.
15. Tomás Feder and Pavol Hell. Full Constraint Satisfaction Problems. SIAM J. Comput., 36(1):230-246, 2006. URL: https://doi.org/10.1137/S0097539703427197.
16. Tomás Feder, Pavol Hell, and Jing Huang. List Homomorphisms and Circular Arc Graphs. Combinatorica, 19(4):487-505, October 1999.
17. Tomás Feder, Pavol Hell, Sulamita Klein, and Rajeev Motwani. List Partitions. Journal of Discrete Mathematics, 16(3):449-478, 2003.
18. Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics, 8(3):399-404, 1956.
19. Michael R. Garey and David S. Johnson. Computers and intractability: A guide to the theory of NP-completeness. Computers and Intractability, page 340, 1979.
20. Michael. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some Simplified NP-Complete Graph Problems. Theor. Comput. Sci., 1(3):237-267, 1976. URL: https://doi.org/10.1016/0304-3975(76)90059-1.
21. Andreas Göbel, Leslie Ann Goldberg, Colin McQuillan, David Richerby, and Tomoyuki Yamakami. Counting List Matrix Partitions of Graphs. SIAM J. Comput., 44(4):1089-1118, 2015. URL: https://doi.org/10.1137/140963029.
22. Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 2004.
23. Melven R. Krom. The decision problem for a class of first-order formulas in which all disjunctions are binary. Mathematical Logic Quarterly, 13(1-2):15-20, 1967.
24. Marek Kubale. Some results concerning the complexity of restricted colorings of graphs. Discrete Applied Mathematics, 36(1):35-46, 1992.
25. S. Føldes and P. L. Hammer. Split graphs. South-Eastern Conference on Combinatorics, Graph Theory and Computing (SEICCGTC), pages 311-315, 1977.
26. Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Faster Parameterized Algorithms Using Linear Programming. Transactions on Algorithms, 11(2):15:1-15:31, 2014.
27. Dániel Marx. Parameterized graph separation problems. Theoretical Computer Science, 351(3):394-406, 2006.
28. Vadim G. Vizing. Vertex colorings with given colors. Diskret. Analiz, 29:3-10, 1976.
29. Margit Voigt. List colourings of planar graphs. Discrete Mathematics, 120(1-3):215-219, 1993.
30. Mihalis Yannakakis. Node-and Edge-deletion NP-complete Problems. In ACM Symposium on Theory of Computing (STOC), pages 253-264, 1978.
X

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail