LIPIcs.ISAAC.2021.19.pdf
- Filesize: 1.2 MB
- 17 pages
We consider the problem of untangling a given (non-planar) straight-line circular drawing δ_G of an outerplanar graph G = (V,E) into a planar straight-line circular drawing by shifting a minimum number of vertices to a new position on the circle. For an outerplanar graph G, it is clear that such a crossing-free circular drawing always exists and we define the circular shifting number shift°(δ_G) as the minimum number of vertices that need to be shifted to resolve all crossings of δ_G. We show that the problem Circular Untangling, asking whether shift°(δ_G) ≤ K for a given integer K, is NP-complete. Based on this result we study Circular Untangling for almost-planar circular drawings, in which a single edge is involved in all the crossings. In this case we provide a tight upper bound shift°(δ_G) ≤ ⌊n/2⌋-1, where n is the number of vertices in G, and present a polynomial-time algorithm to compute the circular shifting number of almost-planar drawings.
Feedback for Dagstuhl Publishing