Separated Red Blue Center Clustering

Authors Marzieh Eskandari , Bhavika Khare , Nirman Kumar

Thumbnail PDF


  • Filesize: 0.75 MB
  • 13 pages

Document Identifiers

Author Details

Marzieh Eskandari
  • Department of Computer Science, Alzahra University, Tehran, Iran
Bhavika Khare
  • Department of Computer Science, University of Memphis, TN, USA
Nirman Kumar
  • Department of Computer Science, University of Memphis, TN, USA

Cite AsGet BibTex

Marzieh Eskandari, Bhavika Khare, and Nirman Kumar. Separated Red Blue Center Clustering. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 41:1-41:13, Schloss Dagstuhl – Leibniz-Zentrum fΓΌr Informatik (2021)


We study a generalization of k-center clustering, first introduced by Kavand et. al., where instead of one set of centers, we have two types of centers, p red and q blue, and where each red center is at least Ξ± distant from each blue center. The goal is to minimize the covering radius. We provide an approximation algorithm for this problem, and a polynomial-time algorithm for the constrained problem, where all the centers must lie on a line 𝓁.

Subject Classification

ACM Subject Classification
  • Mathematics of computing β†’ Approximation algorithms
  • Theory of computation β†’ Facility location and clustering
  • Theory of computation β†’ Computational geometry
  • Algorithms
  • Facility Location
  • Clustering
  • Approximation Algorithms
  • Computational Geometry


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for clustering. Algorithmica, 33(2):201-226, 2002. URL:
  2. P. Bose, S. Langerman, and S. Roy. Smallest enclosing circle centered on a query line segment. In Proc. of Can. Conf. on Comp. Geom., 2008. Google Scholar
  3. P. Bose and G. Toussaint. Computing the constrained euclidean geodesic and link center of a simple polygon with applications. In Proc. Pacific Graph. Int., pages 102-112, 1996. URL:
  4. P. Brass, C. Knauer, H.-Suk Na, C.-Su Shin, and A. Vigneron. The aligned k-center problem. Int. J. Comp. Geom. Appl., 21(2):157-178, 2011. URL:
  5. G. Das, S. Roy, S. Das, and S. Nandy. Variations of base-station placement problem on the boundary of a convex region. Int. J. Found. Comput. Sci., 19:405-427, 2008. URL:
  6. M. Eskandari, B. B. Khare, and N. Kumar. Separated red blue center clustering, 2021. URL:
  7. T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Th. Comp. Sc., 38:293-306, 1985. URL:
  8. F. Hurtado and G. Toussaint. Constrained facility location. Studies of Location Analysis, Sp. Iss. on Comp. Geom., pages 15-17, 2000. Google Scholar
  9. R. Z. Hwang, R. C. T. Lee, and R. C. Chang. The slab dividing approach to solve the euclidean p-center problem. Algorithmica, 9:1-22, 1993. URL:
  10. P. Kavand, A. Mohades, and M. Eskandari. (n,1,1,Ξ±)-center problem. Amirkabir Int. J. of Sc. & Res., 2014. Google Scholar
  11. N. Megiddo. Linear time algorithms for linear programming in ℝ³. SIAM J. Comput., 12(4), 1983. URL:
  12. N. Megiddo and K. J. Supowit. On the complexity of some common geometric location problems. SIAM J. Comput., 13(1):182-196, 1984. URL:
  13. S. Roy, D. Bardhan, and S. Das. Efficient algorithm for placing base stations by avoiding forbidden zone. In Proc. of the Sec. Int. Conf. Dist. Comp. and Int. Tech., pages 105-116, 2005. URL:
  14. C.-S. Shin, J.-H. Kim, S. K. Kim, and K.-Y. Chwa. Two-center problems for a convex polygon. In Proc. of the 6th Ann. Euro. Symp. Alg., pages 199-210, 1998. URL:
  15. J. J. Sylvester. A question in the geometry of situation. Quart. J. Math., 322(10):79, 1857. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail