Document Open Access Logo

On the Extended TSP Problem

Authors Julián Mestre , Sergey Pupyrev , Seeun William Umboh



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2021.42.pdf
  • Filesize: 0.72 MB
  • 14 pages

Document Identifiers

Author Details

Julián Mestre
  • Facebook Inc., Menlo Park, CA, USA
  • The University of Sydney, Australia
Sergey Pupyrev
  • Facebook Inc., Menlo Park, CA, USA
Seeun William Umboh
  • The University of Sydney, Australia

Acknowledgements

We would like to thank Vahid Liaghat for fruitful discussions on the Ext-TSP problem.

Cite AsGet BibTex

Julián Mestre, Sergey Pupyrev, and Seeun William Umboh. On the Extended TSP Problem. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 42:1-42:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.ISAAC.2021.42

Abstract

We initiate the theoretical study of Ext-TSP, a problem that originates in the area of profile-guided binary optimization. Given a graph G = (V, E) with positive edge weights w: E → R^+, and a non-increasing discount function f(⋅) such that f(1) = 1 and f(i) = 0 for i > k, for some parameter k that is part of the problem definition. The problem is to sequence the vertices V so as to maximize ∑_{(u, v) ∈ E} f(|d_u - d_v|)⋅ w(u,v), where d_v ∈ {1, …, |V|} is the position of vertex v in the sequence. We show that Ext-TSP is APX-hard to approximate in general and we give a (k+1)-approximation algorithm for general graphs and a PTAS for some sparse graph classes such as planar or treewidth-bounded graphs. Interestingly, the problem remains challenging even on very simple graph classes; indeed, there is no exact n^o(k) time algorithm for trees unless the ETH fails. We complement this negative result with an exact n^O(k) time algorithm for trees.

Subject Classification

ACM Subject Classification
  • Theory of computation → Approximation algorithms analysis
Keywords
  • profile-guided optimization
  • approximation algorithms
  • bandwidth
  • TSP

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized paging algorithms. Theor. Comput. Sci., 234(1-2):203-218, 2000. URL: https://doi.org/10.1016/S0304-3975(98)00116-9.
  2. Brenda S. Baker. Approximation algorithms for np-complete problems on planar graphs. Journal of the ACM, 41(1):153-180, 1994. Google Scholar
  3. Moses Charikar, Mohammad Taghi Hajiaghayi, Howard J. Karloff, and Satish Rao. l_2^2 spreading metrics for vertex ordering problems. Algorithmica, 56(4):577-604, 2010. Google Scholar
  4. Zhi-Zhong Chen, Yuusuke Okamoto, and Lusheng Wang. Improved deterministic approximation algorithms for max TSP. Inf. Process. Lett., 95(2):333-342, 2005. Google Scholar
  5. Markus Sortland Dregi and Daniel Lokshtanov. Parameterized complexity of bandwidth on trees. In International Colloquium on Automata, Languages, and Programming, pages 405-416. Springer, 2014. Google Scholar
  6. Chandan K. Dubey, Uriel Feige, and Walter Unger. Hardness results for approximating the bandwidth. J. Comput. Syst. Sci., 77(1):62-90, 2011. Google Scholar
  7. Szymon Dudycz, Jan Marcinkowski, Katarzyna E. Paluch, and Bartosz Rybicki. A 4/5 - approximation algorithm for the maximum traveling salesman problem. In Proc of 19th International Conference on Integer Programming and Combinatorial Optimization, volume 10328, pages 173-185, 2017. Google Scholar
  8. Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approximation algorithms via spreading metrics. J. ACM, 47(4):585-616, 2000. URL: https://doi.org/10.1145/347476.347478.
  9. Uriel Feige. Approximating the bandwidth via volume respecting embeddings. J. Comput. Syst. Sci., 60(3):510-539, 2000. Google Scholar
  10. Uriel Feige and James R. Lee. An improved approximation ratio for the minimum linear arrangement problem. Inf. Process. Lett., 101(1):26-29, 2007. URL: https://doi.org/10.1016/j.ipl.2006.07.009.
  11. Uriel Feige and Kunal Talwar. Approximating the bandwidth of caterpillars. Algorithmica, 55(1):190-204, 2009. Google Scholar
  12. Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and Neal E. Young. Competitive paging algorithms. J. Algorithms, 12(4):685-699, 1991. URL: https://doi.org/10.1016/0196-6774(91)90041-V.
  13. Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. An analysis of approximations for finding a maximum weight hamiltonian circuit. Oper. Res., 27(4):799-809, 1979. Google Scholar
  14. Anupam Gupta. Improved bandwidth approximation for trees and chordal graphs. J. Algorithms, 40(1):24-36, 2001. Google Scholar
  15. Refael Hassin and Shlomi Rubinstein. An approximation algorithm for the maximum traveling salesman problem. Inf. Process. Lett., 67(3):125-130, 1998. Google Scholar
  16. Refael Hassin and Shlomi Rubinstein. Better approximations for max TSP. Inf. Process. Lett., 75(4):181-186, 2000. Google Scholar
  17. Facebook Inc. Binary optimization and layout tool, 2020. URL: https://github.com/facebookincubator/BOLT.
  18. S. Rao Kosaraju, James K. Park, and Clifford Stein. Long tours and short superstrings (preliminary version). In 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 166-177. IEEE Computer Society, 1994. Google Scholar
  19. Lyle A. McGeoch and Daniel Dominic Sleator. A strongly competitive randomized paging algorithm. Algorithmica, 6(6):816-825, 1991. URL: https://doi.org/10.1007/BF01759073.
  20. Andy Newell and Sergey Pupyrev. Improved basic block reordering. IEEE Transactions in Computers, 69(12):1784-1794, 2020. Google Scholar
  21. Katarzyna E. Paluch, Marcin Mucha, and Aleksander Madry. A 7/9 - approximation algorithm for the maximum traveling salesman problem. In Proc of 12th International Workshop on Approximation, Randomization, and Combinatorial Optimization, volume 5687, pages 298-311, 2009. Google Scholar
  22. Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. Bolt: A practical binary optimizer for data centers and beyond. In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization, pages 2-14, 2019. Google Scholar
  23. Christos H. Papadimitriou and Mihalis Yannakakis. The traveling salesman problem with distances one and two. Math. Oper. Res., 18(1):1-11, 1993. Google Scholar
  24. Karl Pettis and Robert C Hansen. Profile guided code positioning. In Proc. of the 11th ACM Conference on Programming Language Design and Implementation, pages 16-27, 1990. Google Scholar
  25. Satish Rao and Andréa W. Richa. New approximation techniques for some linear ordering problems. SIAM J. Comput., 34(2):388-404, 2004. URL: https://doi.org/10.1137/S0097539702413197.
  26. James B Saxe. Dynamic-programming algorithms for recognizing small-bandwidth graphs in polynomial time. SIAM Journal on Algebraic Discrete Methods, 1(4):363-369, 1980. Google Scholar
  27. Alexander Schrijver. Combinatorial Optimization. Springer-Verlag, 2003. Google Scholar
  28. A. I. Serdyukov. An algorithm with an estimate for the traveling salesman problem of maximum (in russian). Upravlyaemye Sistemy, 25:80-86, 1984. Google Scholar
  29. Yossi Shiloach. A minimum linear arrangement algorithm for undirected trees. SIAM J. Comput., 8(1):15-32, 1979. URL: https://doi.org/10.1137/0208002.
  30. Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and paging rules. Commun. ACM, 28(2):202-208, 1985. URL: https://doi.org/10.1145/2786.2793.
  31. Neal E. Young. Online paging and caching. In Encyclopedia of Algorithms, pages 1457-1461. Springer, 2016. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail