Connected Coordinated Motion Planning with Bounded Stretch

Authors Sándor P. Fekete , Phillip Keldenich , Ramin Kosfeld , Christian Rieck , Christian Scheffer



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2021.9.pdf
  • Filesize: 11.53 MB
  • 16 pages

Document Identifiers

Author Details

Sándor P. Fekete
  • Department of Computer Science, TU Braunschweig, Germany
Phillip Keldenich
  • Department of Computer Science, TU Braunschweig, Germany
Ramin Kosfeld
  • Department of Computer Science, TU Braunschweig, Germany
Christian Rieck
  • Department of Computer Science, TU Braunschweig, Germany
Christian Scheffer
  • Faculty of Electrical Engineering and Computer Science, Bochum University of Applied Sciences, Bochum, Germany

Acknowledgements

We thank Linda Kleist and Arne Schmidt for helpful algorithmic discourse and suggestions that improved the presentation of this paper.

Cite AsGet BibTex

Sándor P. Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck, and Christian Scheffer. Connected Coordinated Motion Planning with Bounded Stretch. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.ISAAC.2021.9

Abstract

We consider the problem of coordinated motion planning for a swarm of simple, identical robots: From a given start grid configuration of robots, we need to reach a desired target configuration via a sequence of parallel, continuous, collision-free robot motions, such that the set of robots induces a connected grid graph at all integer times. The objective is to minimize the makespan of the motion schedule, i.e., to reach the new configuration in a minimum amount of time. We show that this problem is NP-hard, even for deciding whether a makespan of 2 can be achieved, while it is possible to check in polynomial time whether a makespan of 1 can be achieved. On the algorithmic side, we establish simultaneous constant-factor approximation for two fundamental parameters, by achieving constant stretch for constant scale. Scaled shapes (which arise by increasing all dimensions of a given object by the same multiplicative factor) have been considered in previous seminal work on self-assembly, often with unbounded or logarithmic scale factors; we provide methods for a generalized scale factor, bounded by a constant. Moreover, our algorithm achieves a constant stretch factor: If mapping the start configuration to the target configuration requires a maximum Manhattan distance of d, then the total duration of our overall schedule is 𝒪(d), which is optimal up to constant factors.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Computing methodologies → Motion path planning
Keywords
  • Motion planning
  • parallel motion
  • bounded stretch
  • scaled shape
  • makespan
  • connectivity
  • swarm robotics

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Aviv Adler, Mark de Berg, Dan Halperin, and Kiril Solovey. Efficient Multi-Robot Motion Planning for Unlabeled Discs in Simple Polygons. IEEE Transactions on Automation Science and Engineering, 12(4):1309-1317, 2015. URL: https://doi.org/10.1109/TASE.2015.2470096.
  2. Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Matthias Konitzny, Lillian Lin, and Christian Scheffer. Coordinated Motion Planning: The Video. In Symposium on Computational Geometry (SoCG), pages 74:1-74:6, 2018. Video at https://www.ibr.cs.tu-bs.de/users/fekete/Videos/CoordinatedMotionPlanning.mp4. URL: https://doi.org/10.4230/LIPIcs.SoCG.2018.74.
  3. Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and Vijay Kumar. A Survey on Aerial Swarm Robotics. IEEE Transactions on Robotics, 34(4):837-855, 2018. URL: https://doi.org/10.1109/TRO.2018.2857475.
  4. Mark de Berg and Amirali Khosravi. Optimal Binary Space Partitions for Segments in the Plane. International Journal on Computational Geometry and Applications, 22(3):187-206, 2012. URL: https://doi.org/10.1142/S0218195912500045.
  5. Daniel Delahaye, Stéphane Puechmorel, Panagiotis Tsiotras, and Eric Féron. Mathematical Models for Aircraft Trajectory Design: A Survey. In Air Traffic Management and Systems, pages 205-247, 2014. URL: https://doi.org/10.1007/978-4-431-54475-3_12.
  6. Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Mashhood Ishaque, Eynat Rafalin, Robert T. Schweller, and Diane Souvaine. Staged Self-assembly: Nanomanufacture of Arbitrary Shapes with O(1) Glues. Natural Computing, 7(3):347-370, 2008. URL: https://doi.org/10.1007/s11047-008-9073-0.
  7. Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Henk Meijer, and Christian Scheffer. Coordinated Motion Planning: Reconfiguring a Swarm of Labeled Robots with Bounded Stretch. SIAM Journal on Computing, 48(6):1727-1762, 2019. URL: https://doi.org/10.1137/18M1194341.
  8. Erik D. Demaine, Sándor P. Fekete, Christian Scheffer, and Arne Schmidt. New Geometric Algorithms for Fully Connected Staged Self-Assembly. Theoretical Computer Science, 671:4-18, 2017. URL: https://doi.org/10.1016/j.tcs.2016.11.020.
  9. Erik D. Demaine, Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with Small Scale Factor. In Symposium on Theoretical Aspects of Computer Science, volume 9, pages 201-212, 2011. URL: https://doi.org/10.4230/LIPIcs.STACS.2011.201.
  10. Sándor P. Fekete, Björn Hendriks, Christopher Tessars, Axel Wegener, Horst Hellbrück, Stefan Fischer, and Sebastian Ebers. Methods for Improving the Flow of Traffic. In Organic Computing - A Paradigm Shift for Complex Systems, volume 1 of Autonomic Systems. Springer, 2011. URL: https://doi.org/10.1007/978-3-0348-0130-0_29.
  11. Sándor P. Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck, and Christian Scheffer. Connected Coordinated Motion Planning with Bounded Stretch, 2021. URL: http://arxiv.org/abs/2109.12381.
  12. Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B. Mitchell. Computing Coordinated Motion Plans for Robot Swarms: The CG:SHOP Challenge 2021, 2021. URL: http://arxiv.org/abs/2103.15381.
  13. Seth C. Goldstein and Todd C. Mowry. Claytronics: A scalable basis for future robots. In Robosphere 2004, 2004. URL: http://www.cs.cmu.edu/~claytronics/papers/goldstein-robosphere04.pdf.
  14. John E. Hopcroft and Richard M. Karp. An n^5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2(4):225-231, 1973. URL: https://doi.org/10.1137/0202019.
  15. Stephen Kloder and Seth Hutchinson. Path planning for permutation-invariant multi-robot formations. IEEE Transactions on Robotics and Automation, 22(4):650-665, 2006. URL: https://doi.org/10.1109/TRO.2006.878952.
  16. Austin Luchsinger, Robert T. Schweller, and Tim Wylie. Self-assembly of shapes at constant scale using repulsive forces. Natural Computing, 18(1):93-105, 2019. URL: https://doi.org/10.1007/s11047-018-9707-9.
  17. Florian Pescher, Nils Napp, Benoît Piranda, and Julien Bourgeois. GAPCoD: A Generic Assembly Planner by Constrained Disassembly. In Autonomous Agents and MultiAgent Systems, pages 1028-1036, 2020. URL: https://dl.acm.org/doi/abs/10.5555/3398761.3398881.
  18. Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly in a thousand-robot swarm. Science, 345(6198):795-799, 2014. URL: https://doi.org/10.1126/science.1254295.
  19. Erol Şahin and Alan F. T. Winfield. Special issue on swarm robotics. Swarm Intelligence, 2(2):69-72, 2008. URL: https://doi.org/10.1007/s11721-008-0020-6.
  20. Michael Schreckenberg and Reinhard Selten. Human Behaviour and Traffic Networks. Springer, 2013. URL: https://doi.org/10.1007/978-3-662-07809-9.
  21. Jacob T. Schwartz and Micha Sharir. On the piano movers' problem: III. Coordinating the motion of several independent bodies: the special case of circular bodies moving amidst polygonal barriers. International Journal of Robotics Research, 2(3):46-75, 1983. URL: https://doi.org/10.1177/027836498300200304.
  22. David Soloveichik and Erik Winfree. Complexity of Self-Assembled Shapes. SIAM Journal on Computing, 36(6):1544-1569, 2007. URL: https://doi.org/10.1137/S0097539704446712.
  23. Kiril Solovey and Dan Halperin. k-Color Multi-Robot Motion Planning. International Journal of Robotics Research, 33(1):82-97, 2014. URL: https://doi.org/10.1177/0278364913506268.
  24. Kiril Solovey and Dan Halperin. On the Hardness of Unlabeled Multi-Robot Motion Planning. International Journal of Robotics Research, 35(14):1750-1759, 2016. URL: https://doi.org/10.1177/0278364916672311.
  25. Kiril Solovey, Jingjin Yu, Or Zamir, and Dan Halperin. Motion Planning for Unlabeled Discs with Optimality Guarantees. In Robotics: Science and Systems, 2015. URL: https://doi.org/10.15607/RSS.2015.XI.011.
  26. Pierre Thalamy, Benoît Piranda, and Julien Bourgeois. Distributed Self-Reconfiguration using a Deterministic Autonomous Scaffolding Structure. In Autonomous Agents and MultiAgent Systems, pages 140-148, 2019. URL: https://dl.acm.org/doi/abs/10.5555/3306127.3331685.
  27. Matthew Turpin, Nathan Michael, and Vijay Kumar. Trajectory planning and assignment in multirobot systems. In Algorithmic Foundations of Robotics X, pages 175-190. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-36279-8_11.
  28. Matthew Turpin, Kartik Mohta, Nathan Michael, and Vijay Kumar. Goal assignment and trajectory planning for large teams of interchangeable robots. Autonomous Robots, 37(4):401-415, 2014. URL: https://doi.org/10.1007/s10514-014-9412-1.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail