The B^ε-tree [Brodal and Fagerberg 2003] is a simple I/O-efficient external-memory-model data structure that supports updates orders of magnitude faster than B-tree with a query performance comparable to the B-tree: for any positive constant ε < 1 insertions and deletions take O(1/B^(1-ε) log_B N) time (rather than O(log_BN) time for the classic B-tree), queries take O(log_B N) time and range queries returning k items take O(log_B N + k/B) time. Although the B^ε-tree has an optimal update/query tradeoff, the runtimes are amortized. Another structure, the write-optimized skip list, introduced by Bender et al. [PODS 2017], has the same performance as the B^ε-tree but with runtimes that are randomized rather than amortized. In this paper, we present a variant of the B^ε-tree with deterministic worst-case running times that are identical to the original’s amortized running times.
@InProceedings{das_et_al:LIPIcs.ISAAC.2022.21, author = {Das, Rathish and Iacono, John and Nekrich, Yakov}, title = {{External-Memory Dictionaries with Worst-Case Update Cost}}, booktitle = {33rd International Symposium on Algorithms and Computation (ISAAC 2022)}, pages = {21:1--21:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-258-7}, ISSN = {1868-8969}, year = {2022}, volume = {248}, editor = {Bae, Sang Won and Park, Heejin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.21}, URN = {urn:nbn:de:0030-drops-173060}, doi = {10.4230/LIPIcs.ISAAC.2022.21}, annote = {Keywords: Data Structures, External Memory, Buffer Tree} }
Feedback for Dagstuhl Publishing