On Finding Short Reconfiguration Sequences Between Independent Sets

Authors Akanksha Agrawal, Soumita Hait, Amer E. Mouawad



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2022.39.pdf
  • Filesize: 0.82 MB
  • 14 pages

Document Identifiers

Author Details

Akanksha Agrawal
  • Indian Institute of Technology Madras, Chennai, India
Soumita Hait
  • Indian Institute of Technology, Kharagpur, India
Amer E. Mouawad
  • American University of Beirut, Lebanon
  • Universität Bremen, Germany

Cite AsGet BibTex

Akanksha Agrawal, Soumita Hait, and Amer E. Mouawad. On Finding Short Reconfiguration Sequences Between Independent Sets. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 39:1-39:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.ISAAC.2022.39

Abstract

Assume we are given a graph G, two independent sets S and T in G of size k ≥ 1, and a positive integer 𝓁 ≥ 1. The goal is to decide whether there exists a sequence ⟨ I₀, I₁, ..., I_𝓁 ⟩ of independent sets such that for all j ∈ {0,…,𝓁-1} the set I_j is an independent set of size k, I₀ = S, I_𝓁 = T, and I_{j+1} is obtained from I_j by a predetermined reconfiguration rule. We consider two reconfiguration rules, namely token sliding and token jumping. Intuitively, we view each independent set as a collection of tokens placed on the vertices of the graph. Then, the Token Sliding Optimization (TSO) problem asks whether there exists a sequence of at most 𝓁 steps that transforms S into T, where at each step we are allowed to slide one token from a vertex to an unoccupied neighboring vertex (while maintaining independence). In the Token Jumping Optimization (TJO) problem, at each step, we are allowed to jump one token from a vertex to any other unoccupied vertex of the graph (as long as we maintain independence). Both TSO and TJO are known to be fixed-parameter tractable when parameterized by 𝓁 on nowhere dense classes of graphs. In this work, we investigate the boundary of tractability for sparse classes of graphs. We show that both problems are fixed-parameter tractable for parameter k + 𝓁 + d on d-degenerate graphs as well as for parameter |M| + 𝓁 + Δ on graphs having a modulator M whose deletion leaves a graph of maximum degree Δ. We complement these result by showing that for parameter 𝓁 alone both problems become W[1]-hard already on 2-degenerate graphs. Our positive result makes use of the notion of independence covering families introduced by Lokshtanov et al. [Daniel Lokshtanov et al., 2020]. Finally, we show as a side result that using such families we can obtain a simpler and unified algorithm for the standard Token Jumping Reachability problem (a.k.a. Token Jumping) parameterized by k on both degenerate and nowhere dense classes of graphs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Token sliding
  • token jumping
  • fixed-parameter tractability
  • combinatorial reconfiguration
  • shortest reconfiguration sequence

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noga Alon, Raphael Yuster, and Uri Zwick. Color coding. In Encyclopedia of Algorithms, pages 335-338. Springer, 2016. URL: https://doi.org/10.1007/978-1-4939-2864-4_76.
  2. Valentin Bartier, Nicolas Bousquet, and Amer E. Mouawad. Galactic Token Sliding. CoRR, abs/2204.05549, 2022. URL: https://doi.org/10.48550/arXiv.2204.05549.
  3. Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, Yota Otachi, and Florian Sikora. Token sliding on split graphs. Theory Comput. Syst., 65(4):662-686, 2021. URL: https://doi.org/10.1007/s00224-020-09967-8.
  4. Hans L. Bodlaender, Carla Groenland, and Céline M. F. Swennenhuis. Parameterized Complexities of Dominating and Independent Set Reconfiguration. In Petr A. Golovach and Meirav Zehavi, editors, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021), volume 214 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1-9:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.IPEC.2021.9.
  5. Marthe Bonamy and Nicolas Bousquet. Token sliding on chordal graphs. In Hans L. Bodlaender and Gerhard J. Woeginger, editors, Graph-Theoretic Concepts in Computer Science - 43rd International Workshop, WG 2017, Eindhoven, The Netherlands, June 21-23, 2017, Revised Selected Papers, volume 10520 of Lecture Notes in Computer Science, pages 127-139. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-68705-6_10.
  6. Paul S. Bonsma, Marcin Kaminski, and Marcin Wrochna. Reconfiguring independent sets in claw-free graphs. In R. Ravi and Inge Li Gørtz, editors, Algorithm Theory - SWAT 2014 - 14th Scandinavian Symposium and Workshops, Copenhagen, Denmark, July 2-4, 2014. Proceedings, volume 8503 of Lecture Notes in Computer Science, pages 86-97. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-08404-6_8.
  7. Nicolas Bousquet, Arnaud Mary, and Aline Parreau. Token jumping in minor-closed classes. In Ralf Klasing and Marc Zeitoun, editors, Fundamentals of Computation Theory - 21st International Symposium, FCT 2017, Bordeaux, France, September 11-13, 2017, Proceedings, volume 10472 of Lecture Notes in Computer Science, pages 136-149. Springer, 2017. URL: https://doi.org/10.1007/978-3-662-55751-8_12.
  8. Nicolas Bousquet, Amer E. Mouawad, Naomi Nishimura, and Sebastian Siebertz. A survey on the parameterized complexity of the independent set and (connected) dominating set reconfiguration problems. CoRR, abs/2204.10526, 2022. URL: https://doi.org/10.48550/arXiv.2204.10526.
  9. Leizhen Cai, Siu Man Chan, and Siu On Chan. Random separation: A new method for solving fixed-cardinality optimization problems. In Hans L. Bodlaender and Michael A. Langston, editors, Parameterized and Exact Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings, volume 4169 of Lecture Notes in Computer Science, pages 239-250. Springer, 2006. URL: https://doi.org/10.1007/11847250_22.
  10. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  11. Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro Ito, Hirotaka Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada. Polynomial-time algorithm for sliding tokens on trees. In Hee-Kap Ahn and Chan-Su Shin, editors, Algorithms and Computation - 25th International Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Proceedings, volume 8889 of Lecture Notes in Computer Science, pages 389-400. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-13075-0_31.
  12. Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness I: basic results. SIAM J. Comput., 24(4):873-921, 1995. URL: https://doi.org/10.1137/S0097539792228228.
  13. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in Computer Science. Springer, 1999. URL: https://doi.org/10.1007/978-1-4612-0515-9.
  14. Eli Fox-Epstein, Duc A. Hoang, Yota Otachi, and Ryuhei Uehara. Sliding token on bipartite permutation graphs. In Khaled M. Elbassioni and Kazuhisa Makino, editors, Algorithms and Computation - 26th International Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, volume 9472 of Lecture Notes in Computer Science, pages 237-247. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-48971-0_21.
  15. Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci., 343(1-2):72-96, 2005. URL: https://doi.org/10.1016/j.tcs.2005.05.008.
  16. Duc A. Hoang, Amanj Khorramian, and Ryuhei Uehara. Shortest reconfiguration sequence for sliding tokens on spiders. In Pinar Heggernes, editor, Algorithms and Complexity - 11th International Conference, CIAC 2019, Rome, Italy, May 27-29, 2019, Proceedings, volume 11485 of Lecture Notes in Computer Science, pages 262-273. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-17402-6_22.
  17. Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. Theor. Comput. Sci., 412(12-14):1054-1065, 2011. URL: https://doi.org/10.1016/j.tcs.2010.12.005.
  18. Takehiro Ito, Marcin Kaminski, Hirotaka Ono, Akira Suzuki, Ryuhei Uehara, and Katsuhisa Yamanaka. On the parameterized complexity for token jumping on graphs. In T. V. Gopal, Manindra Agrawal, Angsheng Li, and S. Barry Cooper, editors, Theory and Applications of Models of Computation - 11th Annual Conference, TAMC 2014, Chennai, India, April 11-13, 2014. Proceedings, volume 8402 of Lecture Notes in Computer Science, pages 341-351. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-06089-7_24.
  19. Takehiro Ito, Marcin Jakub Kaminski, Hirotaka Ono, Akira Suzuki, Ryuhei Uehara, and Katsuhisa Yamanaka. Parameterized complexity of independent set reconfiguration problems. Discret. Appl. Math., 283:336-345, 2020. URL: https://doi.org/10.1016/j.dam.2020.01.022.
  20. Takehiro Ito and Yota Otachi. Reconfiguration of colorable sets in classes of perfect graphs. Theor. Comput. Sci., 772:111-122, 2019. URL: https://doi.org/10.1016/j.tcs.2018.11.024.
  21. Marcin Kaminski, Paul Medvedev, and Martin Milanic. Complexity of independent set reconfigurability problems. Theor. Comput. Sci., 439:9-15, 2012. URL: https://doi.org/10.1016/j.tcs.2012.03.004.
  22. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85-103. Plenum Press, New York, 1972. URL: https://doi.org/10.1007/978-1-4684-2001-2_9.
  23. Daniel Lokshtanov and Amer E. Mouawad. The complexity of independent set reconfiguration on bipartite graphs. ACM Trans. Algorithms, 15(1):7:1-7:19, 2019. URL: https://doi.org/10.1145/3280825.
  24. Daniel Lokshtanov, Amer E. Mouawad, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Reconfiguration on sparse graphs. J. Comput. Syst. Sci., 95:122-131, 2018. URL: https://doi.org/10.1016/j.jcss.2018.02.004.
  25. Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Covering small independent sets and separators with applications to parameterized algorithms. ACM Trans. Algorithms, 16(3):32:1-32:31, 2020. URL: https://doi.org/10.1145/3379698.
  26. Amer E. Mouawad, Naomi Nishimura, Venkatesh Raman, and Sebastian Siebertz. Vertex cover reconfiguration and beyond. Algorithms, 11(2):20, 2018. URL: https://doi.org/10.3390/a11020020.
  27. Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. URL: https://doi.org/10.3390/a11040052.
  28. Jan van den Heuvel. The complexity of change. In Simon R. Blackburn, Stefanie Gerke, and Mark Wildon, editors, Surveys in Combinatorics 2013, volume 409 of London Mathematical Society Lecture Note Series, pages 127-160. Cambridge University Press, 2013. URL: https://doi.org/10.1017/CBO9781139506748.005.
  29. Tom C. van der Zanden. Parameterized complexity of graph constraint logic. In Thore Husfeldt and Iyad A. Kanj, editors, 10th International Symposium on Parameterized and Exact Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, volume 43 of LIPIcs, pages 282-293. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPIcs.IPEC.2015.282.
  30. Marcin Wrochna. Reconfiguration in bounded bandwidth and tree-depth. J. Comput. Syst. Sci., 93:1-10, 2018. URL: https://doi.org/10.1016/j.jcss.2017.11.003.
  31. Takeshi Yamada and Ryuhei Uehara. Shortest reconfiguration of sliding tokens on subclasses of interval graphs. Theor. Comput. Sci., 863:53-68, 2021. URL: https://doi.org/10.1016/j.tcs.2021.02.019.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail