Document

# On Reverse Shortest Paths in Geometric Proximity Graphs

## File

LIPIcs.ISAAC.2022.42.pdf
• Filesize: 0.97 MB
• 19 pages

## Cite As

Pankaj K. Agarwal, Matthew J. Katz, and Micha Sharir. On Reverse Shortest Paths in Geometric Proximity Graphs. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.ISAAC.2022.42

## Abstract

Let S be a set of n geometric objects of constant complexity (e.g., points, line segments, disks, ellipses) in ℝ², and let ϱ: S× S → ℝ_{≥ 0} be a distance function on S. For a parameter r ≥ 0, we define the proximity graph G(r) = (S,E) where E = {(e₁,e₂) ∈ S×S ∣ e₁≠e₂, ϱ(e₁,e₂) ≤ r}. Given S, s,t ∈ S, and an integer k ≥ 1, the reverse-shortest-path (RSP) problem asks for computing the smallest value r^* ≥ 0 such that G(r^*) contains a path from s to t of length at most k. In this paper we present a general randomized technique that solves the RSP problem efficiently for a large family of geometric objects and distance functions. Using standard, and sometimes more involved, semi-algebraic range-searching techniques, we first give an efficient algorithm for the decision problem, namely, given a value r ≥ 0, determine whether G(r) contains a path from s to t of length at most k. Next, we adapt our decision algorithm and combine it with a random-sampling method to compute r^*, by efficiently performing a binary search over an implicit set of O(n²) candidate values that contains r^*. We illustrate the versatility of our general technique by applying it to a variety of geometric proximity graphs. For example, we obtain (i) an O^*(n^{4/3}) expected-time randomized algorithm (where O^*(⋅) hides polylog(n) factors) for the case where S is a set of pairwise-disjoint line segments in ℝ² and ϱ(e₁,e₂) = min_{x ∈ e₁, y ∈ e₂} ‖x-y‖ (where ‖⋅‖ is the Euclidean distance), and (ii) an O^*(n+m^{4/3}) expected-time randomized algorithm for the case where S is a set of m points lying on an x-monotone polygonal chain T with n vertices, and ϱ(p,q), for p,q ∈ S, is the smallest value h such that the points p' := p+(0,h) and q' := q+(0,h) are visible to each other, i.e., all points on the segment p'q' lie above or on the polygonal chain T.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Computational geometry
• Theory of computation → Design and analysis of algorithms
##### Keywords
• Geometric optimization
• proximity graphs
• semi-algebraic range searching
• reverse shortest path

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. P. K. Agarwal. Simplex range searching and its variants: A review. In Journey through Discrete Mathematics: A Tribute to Jiří Matoušek, pages 1-30. Springer Verlag, Berlin-Heidelberg, 2017.
2. P. K. Agarwal, B. Aronov, E. Ezra, and J. Zahl. An efficient algorithm for generalized polynomial partitioning and its applications. SIAM J. Comput., 50:760-787, 2021.
3. P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri. Selecting distances in the plane. Algorithmica, 9:495-514, 1993.
4. P. K. Agarwal, J. Matoušek, and M. Sharir. On range searching with semialgebraic sets II. SIAM J. Comput., 42:2039-2062, 2013.
5. P. K. Agarwal, M. H. Overmars, and M. Sharir. Computing maximally separated sets in the plane. SIAM J. Comput., 36(3):815-834, 2006.
6. P. K. Agarwal and K. R. Varadarajan. Efficient algorithms for approximating polygonal chains. Discrete Comput. Geom., 23(2):273-291, 2000.
7. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics 10. Springer-Verlag, Berlin, 2nd edition, 2006.
8. H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is NP-hard. Comput. Geom., 9(1-2):3-24, 1998.
9. D. Burton and P. L. Toint. On an instance of the inverse shortest paths problem. Math. Program., 53:45-61, 1992.
10. S. Cabello and M. Jejčič. Shortest paths in intersection graphs of unit disks. Comput. Geom. Theory Appls., 48:360-367, 2015.
11. T. M. Chan. On enumerating and selecting distances. Int. J. Comput. Geom. Appl., 11(3):291-304, 2001.
12. T. M. Chan and D. Skrepetos. All-pairs shortest paths in unit-disk graphs in slightly subquadratic time. In 27th Internat. Sympos. on Algorithms and Computation, pages 24:1-24:13, 2016.
13. T. M. Chan and D. Skrepetos. All-pairs shortest paths in geometric intersection graphs. J. Comput. Geom., 10(1):27-41, 2019.
14. T. M. Chan and D. Skrepetos. Approximate shortest paths and distance oracles in weighted unit-disk graphs. J. Comput. Geom., 10(2):3-20, 2019.
15. B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Math., 86(1-3):165-177, 1990.
16. T. Cui and D. S. Hochbaum. Complexity of some inverse shortest path lengths problems. Networks, 56(1):20-29, 2010.
17. G. D. da Fonseca, V. G. P. de Sá, and C. M. H. de Figueiredo. Shifting coresets: Obtaining linear-time approximations for unit disk graphs and other geometric intersection graphs. Int. J. Comput. Geom. Appl., 27(4):255-276, 2017.
18. M. B. Dillencourt, D. M. Mount, and N. S. Netanyahu. A randomized algorithm for slope selection. Int. J. Comput. Geom. Appl., 2(1):1-27, 1992.
19. A. V. Fishkin. Disk graphs: A short survey. In First Internat. Workshop on Approximation and Online Algorithms, volume 2909 of Lecture Notes in Computer Science, pages 260-264, 2003.
20. J. Gao and L. Zhang. Well-separated pair decomposition for the unit-disk graph metric and its applications. SIAM J. Comput., 35(1):151-169, 2005.
21. M. J. Katz and M. Sharir. Efficient algorithms for optimization problems involving distances in a point set. In arXiv:2111.02052.
22. M. J. Katz and M. Sharir. An expander-based approach to geometric optimization. SIAM J. Comput., 26:1384-1408, 1997.
23. J. Matoušek. Randomized optimal algorithm for slope selection. Inf. Process. Lett., 39(4):183-187, 1991.
24. J. Matoušek and Z. Patáková. Multilevel polynomial partitions and simplified range searching. Discrete Comput. Geom., 54:22-41, 2015.
25. N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. ACM, 30(4):852-865, 1983.
26. L. Roditty and M. Segal. On bounded leg shortest paths problems. Algorithmica, 59(4):583-600, 2011.
27. H. Wang and J. Xue. Near-optimal algorithms for shortest paths in weighted unit-disk graphs. Discrete Comput. Geom., 64(4):1141-1166, 2020.
28. H. Wang and Y. Zhao. Reverse shortest path problem for unit-disk graphs. In 17th Internat. Sympos. on Algorithms and Data Structures, pages 655-668, 2021.
29. H. Wang and Y. Zhao. Reverse shortest path problem in weighted unit-disk graphs. In 16th Internat. Conf. on Algorithms and Computation, pages 135-146, 2022.
30. J. Zhang and Y. Lin. Computation of the reverse shortest-path problem. J. Glob. Optim., 25(3):243-261, 2003.
X

Feedback for Dagstuhl Publishing