We initiate the study of the Bounded-Degree Subset Traveling Salesman problem (BDSTSP) in which we are given a graph G = (V,E) with edge cost c_e ≥ 0 on each edge e, degree bounds b_v ≥ 0 on each vertex v ∈ V and a subset of terminals X ⊆ V. The goal is to find a minimum-cost closed walk that spans all terminals and visits each vertex v ∈ V at most b_v/2 times. In this paper, we study bi-criteria approximations that find tours whose cost is within a constant-factor of the optimum tour length while violating the bounds b_v at each vertex by additive quantities. If X = V, an adaptation of the Christofides-Serdyukov algorithm yields a (3/2, +4)-approximation, that is the tour passes through each vertex at most b_v/2+2 times (the degree of v in the multiset of edges on the tour being at most b_v + 4). This is enabled through known results in bounded-degree Steiner trees and integrality of the bounded-degree Y-join polytope. The general case X ≠ V is more challenging since we cannot pass to the metric completion on X. However, it is at least simple to get a (5/3, +4)-bicriteria approximation by using ideas similar to Hoogeveen’s TSP-Path algorithm. Our main result is an improved approximation with marginally worse violations of the vertex bounds: a (13/8, +6)-approximation. We obtain this primarily through adapting the bounded-degree Steiner tree approximation to ensure certain "dangerous" nodes always have even degree in the resulting tree which allows us to bound the cost of the resulting degree-bounded Y-join. We also recover a (3/2, +8)-approximation for this general case.
@InProceedings{friggstad_et_al:LIPIcs.ISAAC.2022.8, author = {Friggstad, Zachary and Mousavi, Ramin}, title = {{Bi-Criteria Approximation Algorithms for Bounded-Degree Subset TSP}}, booktitle = {33rd International Symposium on Algorithms and Computation (ISAAC 2022)}, pages = {8:1--8:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-258-7}, ISSN = {1868-8969}, year = {2022}, volume = {248}, editor = {Bae, Sang Won and Park, Heejin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.8}, URN = {urn:nbn:de:0030-drops-172932}, doi = {10.4230/LIPIcs.ISAAC.2022.8}, annote = {Keywords: Linear programming, approximation algorithms, combinatorial optimization} }
Feedback for Dagstuhl Publishing