The subset cover problem for k ≥ 1 hash functions, which can be seen as an extension of the collision problem, was introduced in 2002 by Reyzin and Reyzin to analyse the security of their hash-function based signature scheme HORS. The security of many hash-based signature schemes relies on this problem or a variant of this problem (e.g. HORS, SPHINCS, SPHINCS+, ...). Recently, Yuan, Tibouchi and Abe (2022) introduced a variant to the subset cover problem, called restricted subset cover, and proposed a quantum algorithm for this problem. In this work, we prove that any quantum algorithm needs to make Ω((k+1)^{-(2^k)/(2^{k+1}-1})⋅ N^{(2^{k}-1})/(2^{k+1}-1)}) queries to the underlying hash functions with codomain size N to solve the restricted subset cover problem, which essentially matches the query complexity of the algorithm proposed by Yuan, Tibouchi and Abe. We also analyze the security of the general (r,k)-subset cover problem, which is the underlying problem that implies the unforgeability of HORS under a r-chosen message attack (for r ≥ 1). We prove that a generic quantum algorithm needs to make Ω(N^{k/5}) queries to the underlying hash functions to find a (1,k)-subset cover. We also propose a quantum algorithm that finds a (r,k)-subset cover making O (N^{k/(2+2r)}) queries to the k hash functions.
@InProceedings{bouazizermann_et_al:LIPIcs.ITC.2023.9, author = {Bouaziz-Ermann, Samuel and Grilo, Alex B. and Vergnaud, Damien}, title = {{Quantum Security of Subset Cover Problems}}, booktitle = {4th Conference on Information-Theoretic Cryptography (ITC 2023)}, pages = {9:1--9:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-271-6}, ISSN = {1868-8969}, year = {2023}, volume = {267}, editor = {Chung, Kai-Min}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2023.9}, URN = {urn:nbn:de:0030-drops-183378}, doi = {10.4230/LIPIcs.ITC.2023.9}, annote = {Keywords: Cryptography, Random oracle model, Quantum information} }
Feedback for Dagstuhl Publishing