Separators in Region Intersection Graphs

Author James R. Lee

Thumbnail PDF


  • Filesize: 0.48 MB
  • 8 pages

Document Identifiers

Author Details

James R. Lee

Cite AsGet BibTex

James R. Lee. Separators in Region Intersection Graphs. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 1:1-1:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


For undirected graphs G=(V,E) and G_0=(V_0,E_0), say that G is a region intersection graph over G_0 if there is a family of connected subsets {R_u \subseteq V_0 : u \in V} of G_0 such that {u,v} \in E \iff R_u \cap R_v \neq \emptyset. We show if G_0 excludes the complete graph K_h as a minor for some h \geq 1, then every region intersection graph G over G_0 with m edges has a balanced separator with at most c_h \sqrt{m} nodes, where c_h is a constant depending only on h. If G additionally has uniformly bounded vertex degrees, then such a separator is found by spectral partitioning. A string graph is the intersection graph of continuous arcs in the plane. String graphs are precisely region intersection graphs over planar graphs. Thus the preceding result implies that every string graph with m edges has a balanced separator of size O(\sqrt{m}). This bound is optimal, as it generalizes the planar separator theorem. It confirms a conjecture of Fox and Pach (2010), and improves over the O(\sqrt{m} \log m) bound of Matousek (2013).
  • Graph separators
  • planar graphs
  • spectral partitioning


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for nonplanar graphs. J. Amer. Math. Soc., 3(4):801-808, 1990. Google Scholar
  2. Punyashloka Biswal, James R. Lee, and Satish Rao. Eigenvalue bounds, spectral partitioning, and metrical deformations via flows. J. ACM, 57(3):Art. 13, 23, 2010. Prelim. version in FOCS 2008. URL:
  3. J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math., 52(1-2):46-52, 1985. Google Scholar
  4. Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation algorithms for minimum weight vertex separators. SIAM J. Comput., 38(2):629-657, 2008. URL:
  5. Jacob Fox and János Pach. A separator theorem for string graphs and its applications. Combin. Probab. Comput., 19(3):371-390, 2010. URL:
  6. Jacob Fox and János Pach. Applications of a new separator theorem for string graphs. Combin. Probab. Comput., 23(1):66-74, 2014. URL:
  7. Jacob Fox, János Pach, and Csaba D. Tóth. A bipartite strengthening of the crossing lemma. J. Combin. Theory Ser. B, 100(1):23-35, 2010. URL:
  8. Misha Gromov. Metric structures for Riemannian and non-Riemannian spaces. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, english edition, 2007. Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates. Google Scholar
  9. Joseph Hersch. Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Sér. A-B, 270:A1645-A1648, 1970. Google Scholar
  10. J. Kelner, J. R. Lee, G. Price, and S.-H. Teng. Metric uniformization and spectral bounds for graphs. Geom. Funct. Anal., 21(5):1117-1143, 2011. Prelim. version in STOC 2009. Google Scholar
  11. Philip N. Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition, and multicommodity flow. In Proceedings of the 25th Annual ACM Symposium on Theory of Computing, pages 682-690, 1993. Google Scholar
  12. A. V. Kostochka. The minimum Hadwiger number for graphs with a given mean degree of vertices. Metody Diskret. Analiz., (38):37-58, 1982. Google Scholar
  13. Jan Kratochvíl. String graphs. II. Recognizing string graphs is NP-hard. J. Combin. Theory Ser. B, 52(1):67-78, 1991. URL:
  14. Jan Kratochvíl and Jiří Matoušek. String graphs requiring exponential representations. J. Combin. Theory Ser. B, 53(1):1-4, 1991. URL:
  15. James R. Lee. Separators in region intersection graphs. Available at, 2016.
  16. James R. Lee and Assaf Naor. Extending Lipschitz functions via random metric partitions. Invent. Math., 160(1):59-95, 2005. Google Scholar
  17. Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM, 46(6):787-832, 1999. Google Scholar
  18. Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM J. Appl. Math., 36(2):177-189, 1979. URL:
  19. Konstantin Makarychev and Yury Makarychev. Metric extension operators, vertex sparsifiers and Lipschitz extendability. Israel J. Math., 212(2):913-959, 2016. URL:
  20. J. Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002. Google Scholar
  21. Jiří Matoušek. Near-optimal separators in string graphs. Combin. Probab. Comput., 23(1):135-139, 2014. URL:
  22. Jiří Matoušek. String graphs and separators. In Geometry, structure and randomness in combinatorics, volume 18 of CRM Series, pages 61-97. Ed. Norm., Pisa, 2015. Google Scholar
  23. Gary L. Miller, Shang-Hua Teng, William Thurston, and Stephen A. Vavasis. Separators for sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1-29, 1997. URL:
  24. Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Recognizing string graphs in NP. J. Comput. System Sci., 67(2):365-380, 2003. Special issue on STOC2002 (Montreal, QC). URL:
  25. Marcus Schaefer and Daniel Štefankovič. Decidability of string graphs. J. Comput. System Sci., 68(2):319-334, 2004. URL:
  26. Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs and finite element meshes. Linear Algebra and its Applications: Special Issue in honor of Miroslav Fiedler, 421(2-3):284-305, March 2007. Google Scholar
  27. Andrew Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc., 95(2):261-265, 1984. Google Scholar