Proving hardness of approximation is a major challenge in the field of fine-grained complexity and conditional lower bounds in P. How well can the Longest Common Subsequence (LCS) or the Edit Distance be approximated by an algorithm that runs in near-linear time? In this paper, we make progress towards answering these questions. We introduce a framework that exhibits barriers for truly subquadratic and deterministic algorithms with good approximation guarantees. Our framework highlights a novel connection between deterministic approximation algorithms for natural problems in P and circuit lower bounds. In particular, we discover a curious connection of the following form: if there exists a \delta>0 such that for all \eps>0 there is a deterministic (1+\eps)-approximation algorithm for LCS on two sequences of length n over an alphabet of size n^{o(1)} that runs in O(n^{2-\delta}) time, then a certain plausible hypothesis is refuted, and the class E^NP does not have non-uniform linear size Valiant Series-Parallel circuits. Thus, designing a "truly subquadratic PTAS" for LCS is as hard as resolving an old open question in complexity theory.
@InProceedings{abboud_et_al:LIPIcs.ITCS.2017.11, author = {Abboud, Amir and Backurs, Arturs}, title = {{Towards Hardness of Approximation for Polynomial Time Problems}}, booktitle = {8th Innovations in Theoretical Computer Science Conference (ITCS 2017)}, pages = {11:1--11:26}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-029-3}, ISSN = {1868-8969}, year = {2017}, volume = {67}, editor = {Papadimitriou, Christos H.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.11}, URN = {urn:nbn:de:0030-drops-81443}, doi = {10.4230/LIPIcs.ITCS.2017.11}, annote = {Keywords: LCS, Edit Distance, Hardness in P} }
Feedback for Dagstuhl Publishing