Cryptographic hash functions are efficiently computable functions that shrink a long input into a shorter output while achieving some of the useful security properties of a random function. The most common type of such hash functions is collision resistant hash functions (CRH), which prevent an efficient attacker from finding a pair of inputs on which the function has the same output.
@InProceedings{applebaum_et_al:LIPIcs.ITCS.2017.7, author = {Applebaum, Benny and Haramaty-Krasne, Naama and Ishai, Yuval and Kushilevitz, Eyal and Vaikuntanathan, Vinod}, title = {{Low-Complexity Cryptographic Hash Functions}}, booktitle = {8th Innovations in Theoretical Computer Science Conference (ITCS 2017)}, pages = {7:1--7:31}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-029-3}, ISSN = {1868-8969}, year = {2017}, volume = {67}, editor = {Papadimitriou, Christos H.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.7}, URN = {urn:nbn:de:0030-drops-81901}, doi = {10.4230/LIPIcs.ITCS.2017.7}, annote = {Keywords: Cryptography, hash functions, complexity theory, coding theory} }
Feedback for Dagstuhl Publishing