This paper initiates the study of I/O algorithms (minimizing cache misses) from the perspective of fine-grained complexity (conditional polynomial lower bounds). Specifically, we aim to answer why sparse graph problems are so hard, and why the Longest Common Subsequence problem gets a savings of a factor of the size of cache times the length of a cache line, but no more. We take the reductions and techniques from complexity and fine-grained complexity and apply them to the I/O model to generate new (conditional) lower bounds as well as new faster algorithms. We also prove the existence of a time hierarchy for the I/O model, which motivates the fine-grained reductions. - Using fine-grained reductions, we give an algorithm for distinguishing 2 vs. 3 diameter and radius that runs in O(|E|^2/(MB)) cache misses, which for sparse graphs improves over the previous O(|V|^2/B) running time. - We give new reductions from radius and diameter to Wiener index and median. These reductions are new in both the RAM and I/O models. - We show meaningful reductions between problems that have linear-time solutions in the RAM model. The reductions use low I/O complexity (typically O(n/B)), and thus help to finely capture between "I/O linear time" O(n/B) and RAM linear time O(n). - We generate new I/O assumptions based on the difficulty of improving sparse graph problem running times in the I/O model. We create conjectures that the current best known algorithms for Single Source Shortest Paths (SSSP), diameter, and radius are optimal. - From these I/O-model assumptions, we show that many of the known reductions in the word-RAM model can naturally extend to hold in the I/O model as well (e.g., a lower bound on the I/O complexity of Longest Common Subsequence that matches the best known running time). - We prove an analog of the Time Hierarchy Theorem in the I/O model, further motivating the study of fine-grained algorithmic differences.
@InProceedings{demaine_et_al:LIPIcs.ITCS.2018.34, author = {Demaine, Erik D. and Lincoln, Andrea and Liu, Quanquan C. and Lynch, Jayson and Vassilevska Williams, Virginia}, title = {{Fine-grained I/O Complexity via Reductions: New Lower Bounds, Faster Algorithms, and a Time Hierarchy}}, booktitle = {9th Innovations in Theoretical Computer Science Conference (ITCS 2018)}, pages = {34:1--34:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-060-6}, ISSN = {1868-8969}, year = {2018}, volume = {94}, editor = {Karlin, Anna R.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.34}, URN = {urn:nbn:de:0030-drops-83335}, doi = {10.4230/LIPIcs.ITCS.2018.34}, annote = {Keywords: IO model, Fine-grained Complexity, Algorithms} }
Feedback for Dagstuhl Publishing