Given a random n × n symmetric matrix ? drawn from the Gaussian orthogonal ensemble (GOE), we consider the problem of certifying an upper bound on the maximum value of the quadratic form ?^⊤ ? ? over all vectors ? in a constraint set ? ⊂ ℝⁿ. For a certain class of normalized constraint sets we show that, conditional on a certain complexity-theoretic conjecture, no polynomial-time algorithm can certify a better upper bound than the largest eigenvalue of ?. A notable special case included in our results is the hypercube ? = {±1/√n}ⁿ, which corresponds to the problem of certifying bounds on the Hamiltonian of the Sherrington-Kirkpatrick spin glass model from statistical physics. Our results suggest a striking gap between optimization and certification for this problem. Our proof proceeds in two steps. First, we give a reduction from the detection problem in the negatively-spiked Wishart model to the above certification problem. We then give evidence that this Wishart detection problem is computationally hard below the classical spectral threshold, by showing that no low-degree polynomial can (in expectation) distinguish the spiked and unspiked models. This method for predicting computational thresholds was proposed in a sequence of recent works on the sum-of-squares hierarchy, and is conjectured to be correct for a large class of problems. Our proof can be seen as constructing a distribution over symmetric matrices that appears computationally indistinguishable from the GOE, yet is supported on matrices whose maximum quadratic form over ? ∈ ? is much larger than that of a GOE matrix.
@InProceedings{bandeira_et_al:LIPIcs.ITCS.2020.78, author = {Bandeira, Afonso S. and Kunisky, Dmitriy and Wein, Alexander S.}, title = {{Computational Hardness of Certifying Bounds on Constrained PCA Problems}}, booktitle = {11th Innovations in Theoretical Computer Science Conference (ITCS 2020)}, pages = {78:1--78:29}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-134-4}, ISSN = {1868-8969}, year = {2020}, volume = {151}, editor = {Vidick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.78}, URN = {urn:nbn:de:0030-drops-117633}, doi = {10.4230/LIPIcs.ITCS.2020.78}, annote = {Keywords: Certification, Sherrington-Kirkpatrick model, spiked Wishart model, low-degree likelihood ratio} }
Feedback for Dagstuhl Publishing