We show that there exist properties that are maximally hard for testing, while still admitting PCPPs with a proof size very close to linear. Specifically, for every fixed ℓ, we construct a property P^(ℓ)⊆ {0,1}^n satisfying the following: Any testing algorithm for P^(ℓ) requires Ω(n) many queries, and yet P^(ℓ) has a constant query PCPP whose proof size is O(n⋅log^(ℓ)n), where log^(ℓ) denotes the ℓ times iterated log function (e.g., log^(2)n = log log n). The best previously known upper bound on the PCPP proof size for a maximally hard to test property was O(n⋅polylog(n)). As an immediate application, we obtain stronger separations between the standard testing model and both the tolerant testing model and the erasure-resilient testing model: for every fixed ℓ, we construct a property that has a constant-query tester, but requires Ω(n/log^(ℓ)(n)) queries for every tolerant or erasure-resilient tester.
@InProceedings{beneliezer_et_al:LIPIcs.ITCS.2020.9, author = {Ben-Eliezer, Omri and Fischer, Eldar and Levi, Amit and Rothblum, Ron D.}, title = {{Hard Properties with (Very) Short PCPPs and Their Applications}}, booktitle = {11th Innovations in Theoretical Computer Science Conference (ITCS 2020)}, pages = {9:1--9:27}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-134-4}, ISSN = {1868-8969}, year = {2020}, volume = {151}, editor = {Vidick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.9}, URN = {urn:nbn:de:0030-drops-116949}, doi = {10.4230/LIPIcs.ITCS.2020.9}, annote = {Keywords: PCPP, Property testing, Tolerant testing, Erasure resilient testing, Randomized encoding, Coding theory} }
Feedback for Dagstuhl Publishing