Document

# Improved Hardness of BDD and SVP Under Gap-(S)ETH

## File

LIPIcs.ITCS.2022.19.pdf
• Filesize: 0.74 MB
• 12 pages

## Acknowledgements

We thank Noah Stephens-Davidowitz for helpful comments.

## Cite As

Huck Bennett, Chris Peikert, and Yi Tang. Improved Hardness of BDD and SVP Under Gap-(S)ETH. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 19:1-19:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.ITCS.2022.19

## Abstract

We show improved fine-grained hardness of two key lattice problems in the 𝓁_p norm: Bounded Distance Decoding to within an α factor of the minimum distance (BDD_{p, α}) and the (decisional) γ-approximate Shortest Vector Problem (GapSVP_{p,γ}), assuming variants of the Gap (Strong) Exponential Time Hypothesis (Gap-(S)ETH). Specifically, we show: 1) For all p ∈ [1, ∞), there is no 2^{o(n)}-time algorithm for BDD_{p, α} for any constant α > α_kn, where α_kn = 2^{-c_kn} < 0.98491 and c_kn is the 𝓁₂ kissing-number constant, unless non-uniform Gap-ETH is false. 2) For all p ∈ [1, ∞), there is no 2^{o(n)}-time algorithm for BDD_{p, α} for any constant α > α^‡_p, where α^‡_p is explicit and satisfies α^‡_p = 1 for 1 ≤ p ≤ 2, α^‡_p < 1 for all p > 2, and α^‡_p → 1/2 as p → ∞, unless randomized Gap-ETH is false. 3) For all p ∈ [1, ∞) ⧵ 2 ℤ and all C > 1, there is no 2^{n/C}-time algorithm for BDD_{p, α} for any constant α > α^†_{p, C}, where α^†_{p, C} is explicit and satisfies α^†_{p, C} → 1 as C → ∞ for any fixed p ∈ [1, ∞), unless non-uniform Gap-SETH is false. 4) For all p > p₀ ≈ 2.1397, p ∉ 2ℤ, and all C > C_p, there is no 2^{n/C}-time algorithm for GapSVP_{p, γ} for some constant γ > 1, where C_p > 1 is explicit and satisfies C_p → 1 as p → ∞, unless randomized Gap-SETH is false. Our results for BDD_{p, α} improve and extend work by Aggarwal and Stephens-Davidowitz (STOC, 2018) and Bennett and Peikert (CCC, 2020). Specifically, the quantities α_kn and α^‡_p (respectively, α^†_{p,C}) significantly improve upon the corresponding quantity α_p^* (respectively, α_{p,C}^*) of Bennett and Peikert for small p (but arise from somewhat stronger assumptions). In particular, Item 1 improves the smallest value of α for which BDD_{p, α} is known to be exponentially hard in the Euclidean norm (p = 2) to an explicit constant α < 1 for the first time under a general-purpose complexity assumption. Items 1 and 3 crucially use the recent breakthrough result of Vlăduţ (Moscow Journal of Combinatorics and Number Theory, 2019), which showed an explicit exponential lower bound on the lattice kissing number. Finally, Item 4 answers a natural question left open by Aggarwal, Bennett, Golovnev, and Stephens-Davidowitz (SODA, 2021), which showed an analogous result for the Closest Vector Problem.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Problems, reductions and completeness
• Theory of computation → Computational geometry
##### Keywords
• lattices
• lattice-based cryptography
• fine-grained complexity
• Bounded Distance Decoding
• Shortest Vector Problem

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Divesh Aggarwal, Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. Fine-grained hardness of CVP(P) - everything that we can prove (and nothing else). In SODA, 2021.
2. Divesh Aggarwal and Eldon Chung. A note on the concrete hardness of the shortest independent vector in lattices. Inf. Process. Lett., 167:106065, 2021. URL: https://doi.org/10.1016/j.ipl.2020.106065.
3. Divesh Aggarwal and Noah Stephens-Davidowitz. (Gap/S)ETH hardness of SVP. In STOC, pages 228-238, 2018.
4. Miklós Ajtai. The shortest vector problem in L₂ is NP-hard for randomized reductions (extended abstract). In STOC, pages 10-19, 1998.
5. Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In STOC, pages 284-293, 1997.
6. Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci., 54(2):317-331, 1997. URL: https://doi.org/10.1006/jcss.1997.1472.
7. Shi Bai, Damien Stehlé, and Weiqiang Wen. Improved reduction from the bounded distance decoding problem to the unique shortest vector problem in lattices. In ICALP, pages 76:1-76:12, 2016.
8. Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. On the quantitative hardness of CVP. In FOCS, 2017.
9. Huck Bennett and Chris Peikert. Hardness of bounded distance decoding on lattices in 𝓁_p norms. In CCC, 2020. URL: https://doi.org/10.4230/LIPIcs.CCC.2020.36.
10. N. D. Elkies, A. M. Odlyzko, and J. A. Rush. On the packing densities of superballs and other bodies. Inventiones mathematicae, 105:613-639, December 1991.
11. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In STOC, pages 197-206, 2008.
12. Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to within almost polynomial factors. Theory of Computing, 8(1):513-531, 2012. Preliminary version in STOC 2007.
13. Subhash Khot. Hardness of approximating the shortest vector problem in lattices. J. ACM, 52(5):789-808, 2005. Preliminary version in FOCS 2004.
14. Subhash Khot. Hardness of approximating the shortest vector problem in high 𝓁_p norms. J. Comput. Syst. Sci., 72(2):206-219, 2006.
15. Yi-Kai Liu, Vadim Lyubashevsky, and Daniele Micciancio. On bounded distance decoding for general lattices. In RANDOM, pages 450-461, 2006.
16. Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique shortest vectors, and the minimum distance problem. In CRYPTO, pages 577-594, 2009.
17. J. E. Mazo and A. M. Odlyzko. Lattice points in high-dimensional spheres. Monatshefte für Mathematik, 110:47-61, March 1990.
18. Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within some constant. SIAM J. Comput., 30(6):2008-2035, 2000. Preliminary version in FOCS 1998.
19. Daniele Micciancio. The hardness of the closest vector problem with preprocessing. IEEE Trans. Information Theory, 47(3):1212-1215, 2001. URL: https://doi.org/10.1109/18.915688.
20. Daniele Micciancio. Inapproximability of the shortest vector problem: Toward a deterministic reduction. Theory of Computing, 8(1):487-512, 2012.
21. Daniele Micciancio. Locally dense codes. In CCC, pages 90-97, 2014. URL: https://doi.org/10.1109/CCC.2014.17.
22. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput., 37(1):267-302, 2007. Preliminary version in FOCS 2004.
23. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6):1-40, 2009. Preliminary version in STOC 2005.
24. Oded Regev and Ricky Rosen. Lattice problems and norm embeddings. In STOC, pages 447-456, 2006.
25. Peter van Emde Boas. Another NP-complete problem and the complexity of computing short vectors in a lattice. Technical Report 81-04, University of Amsterdam, 1981.
26. Serge Vlăduţ. Lattices with exponentially large kissing numbers. Mosc. J. Comb. Number Theory, 8(2):163-177, 2019. URL: https://doi.org/10.2140/moscow.2019.8.163.
X

Feedback for Dagstuhl Publishing

### Thanks for your feedback!

Feedback submitted

### Could not send message

Please try again later or send an E-mail