In this paper, we show the mixing of three-term progressions (x, xg, xg²) in every finite quasirandom group, fully answering a question of Gowers. More precisely, we show that for any D-quasirandom group G and any three sets A₁, A₂, A₃ ⊂ G, we have |Pr_{x,y∼ G}[x ∈ A₁, xy ∈ A₂, xy² ∈ A₃] - ∏_{i = 1}³ Pr_{x∼ G}[x ∈ A_i]| ≤ (2/(√{D)})^{1/4}. Prior to this, Tao answered this question when the underlying quasirandom group is SL_{d}(𝔽_q). Subsequently, Peluse extended the result to all non-abelian finite simple groups. In this work, we show that a slight modification of Peluse’s argument is sufficient to fully resolve Gowers' quasirandom conjecture for 3-term progressions. Surprisingly, unlike the proofs of Tao and Peluse, our proof is elementary and only uses basic facts from non-abelian Fourier analysis.
@InProceedings{bhangale_et_al:LIPIcs.ITCS.2022.20, author = {Bhangale, Amey and Harsha, Prahladh and Roy, Sourya}, title = {{Mixing of 3-Term Progressions in Quasirandom Groups}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {20:1--20:9}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.20}, URN = {urn:nbn:de:0030-drops-156163}, doi = {10.4230/LIPIcs.ITCS.2022.20}, annote = {Keywords: Quasirandom groups, 3-term arithmetic progressions} }
Feedback for Dagstuhl Publishing