Recently, there has been exciting progress in understanding the complexity of distributions. Here, the goal is to quantify the resources required to generate (or sample) a distribution. Proving lower bounds in this new setting is more challenging than in the classical setting, and has yielded interesting new techniques and surprising applications. In this work, we initiate a study of the complexity of sampling with limited memory, and obtain the first nontrivial sampling lower bounds against oblivious read-once branching programs (ROBPs). In our first main result, we show that any distribution sampled by an ROBP of width 2^{Ω(n)} has statistical distance 1-2^{-Ω(n)} from any distribution that is uniform over a good code. More generally, we obtain sampling lower bounds for any list decodable code, which are nearly tight. Previously, such a result was only known for sampling in AC⁰ (Lovett and Viola, CCC'11; Beck, Impagliazzo and Lovett, FOCS'12). As an application of our result, a known connection implies new data structure lower bounds for storing codewords. In our second main result, we prove a direct product theorem for sampling with ROBPs. Previously, no direct product theorems were known for the task of sampling, for any computational model. A key ingredient in our proof is a simple new lemma about amplifying statistical distance between sequences of somewhat-dependent random variables. Using this lemma, we also obtain a simple new proof of a known lower bound for sampling disjoint sets using two-party communication protocols (Göös and Watson, RANDOM'19).
@InProceedings{chattopadhyay_et_al:LIPIcs.ITCS.2022.40, author = {Chattopadhyay, Eshan and Goodman, Jesse and Zuckerman, David}, title = {{The Space Complexity of Sampling}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {40:1--40:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.40}, URN = {urn:nbn:de:0030-drops-156366}, doi = {10.4230/LIPIcs.ITCS.2022.40}, annote = {Keywords: Complexity of distributions, complexity of sampling, extractors, list decodable codes, lower bounds, read-once branching programs, small-space computation} }
Feedback for Dagstuhl Publishing