We introduce the following variant of the VC-dimension. Given S ⊆ {0,1}ⁿ and a positive integer d, we define 𝕌_d(S) to be the size of the largest subset I ⊆ [n] such that the projection of S on every subset of I of size d is the d-dimensional cube. We show that determining the largest cardinality of a set with a given 𝕌_d dimension is equivalent to a Turán-type problem related to the total number of cliques in a d-uniform hypergraph. This allows us to beat the Sauer-Shelah lemma for this notion of dimension. We use this to obtain several results on Σ₃^k-circuits, i.e., depth-3 circuits with top gate OR and bottom fan-in at most k: - Tight relationship between the number of satisfying assignments of a 2-CNF and the dimension of the largest projection accepted by it, thus improving Paturi, Saks, and Zane (Comput. Complex. '00). - Improved Σ₃³-circuit lower bounds for affine dispersers for sublinear dimension. Moreover, we pose a purely hypergraph-theoretic conjecture under which we get further improvement. - We make progress towards settling the Σ₃² complexity of the inner product function and all degree-2 polynomials over 𝔽₂ in general. The question of determining the Σ₃³ complexity of IP was recently posed by Golovnev, Kulikov, and Williams (ITCS'21).
@InProceedings{frankl_et_al:LIPIcs.ITCS.2022.72, author = {Frankl, Peter and Gryaznov, Svyatoslav and Talebanfard, Navid}, title = {{A Variant of the VC-Dimension with Applications to Depth-3 Circuits}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {72:1--72:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.72}, URN = {urn:nbn:de:0030-drops-156680}, doi = {10.4230/LIPIcs.ITCS.2022.72}, annote = {Keywords: VC-dimension, Hypergraph, Clique, Affine Disperser, Circuit} }
Feedback for Dagstuhl Publishing